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ABSTRACT : 

Numerical analysis methods in time-domain and frequency-domain are commonly considered as two important 
ways for seismic evaluation of structure responses. In terms of the seismic wave excitation and the structural
output response, the expressions of time histories are usually applied in the time-domain method, while the 
complex harmonic waves or their summation generally used in the frequency-domain method, it is a focus in 
the field of structure engineering to construct equivalent expressions of seismic wave excitation and structural
responses between time-domain and frequency-domain solution methods. In this paper, as far as general 
dynamic analysis of structure is concerned, a formula of trigonometric coefficients in time domain is deduced
to compute frequency spectrum values at arbitrary frequency points for time history data, which avoids the
disadvantage of the conventional discrete Fourier transform (DFT) method that merely suiting for the discrete 
frequency points. Hence, according to the seismic analysis of structural responses, a quantified assessment of
equivalent expressions for various wave signals are given in detail, which builds a transformation bridge 
between time-domain and frequency-domain solution methods. Finally, the validity and feasibility of the
transformation algorithm in time-domain and frequency-domain are numerical verified by the dynamic 
response analysis of multiple particles damp system and long span structure with seismic wave excitations. It’s
also shown from the results, as the trigonometric coefficient method (TCM) is concerned, only inputted the real 
part or the imaginary part of the seismic wave exaction time history, the equivalence response of structure in
frequency domain can be obtained by a simple combination of trigonometric coefficients in time domain. 

KEYWORDS: Seismic analysis of structural responses, Seismic wave, Trigonometric series, Fourier
transform 

1. INTRODUCTION 

 
Numerical analysis methods in time and frequency domain are powerful tools for the dynamic analysis of 
structure. Since in frequency domain, the amplitudes of the structure dynamic response at different frequencies 
can be accurately described in simple formulation, and it is convenient to express the frequency content of the
ground motion; so it is commonly used in the derivation of structure response analysis, such as soil-structure 
interaction analysis [1] and ground response [2]. In general, the structure response in frequency domain can be
considered as the steady-state of the response in time domain. With the development of computer, more and
more dynamic analysis methods in time domain are used in earthquake engineering. Compared with the 
methods in frequency domain, methods in time domain are able to account for the characteristics of nonlinear
behavior of the structure [1, 3, 4, 5], and it can be express the dynamic response of structure at any time. So 
many methods of structure dynamic analysis are transferred from frequency domain to time domain, for
example, structural damage detection [6]. As a result, it is necessary to practice the numerical research on the
equivalent transformation between structural dynamic analysis in time-domain and frequency-domain.  
 
As we all known, vibratory motion is a physical quantity varied with time, it is can be described in frequency 
domain and time domain. So it is possible for vibratory motion processing between frequency and time domain. 
In frequency domain, researchers usually used the discrete Fourier transform (DFT) to obtain the amplitude of
the vibratory motion at the specific frequencies, but DFT method limits the output frequencies because of the  
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frequency interval ωΔ .So it is impossible for DFT method to get the spectrum at any frequencies. While in this 
paper, based on the notations of the vibratory motion: trigonometric form in time domain and complex
exponential form in frequency domain, the equivalent transformation condition of vibratory motion formulation
between frequency domain and time domain is derived. The equivalent transformation relationship can be
expressed by trigonometric coefficients, which is described by analytical formulation. And therefore, the
spectrum at any frequencies can be obtained by using the methods in time domain. Furthermore, how to 
construct the equivalent seismic wave excitation and how to understand the response of the structure in time
and frequency domains? It is an interesting and attractive topic in civil engineering. In this paper, with respect 
to the dynamic response analysis of damped system subjected to harmonic loading, the response solutions in
time and frequency domain are derived. An assessment on relationship of response solution between time and
frequency domains is carried out. From the assessment, it is obvious that, only input the real part or imaginary
part of the excitation seismic loading, the response in frequency domain can be obtained by the combination of 
trigonometric coefficients, which can be calculated by the response of structure in time domain. Finally, the
validity and feasibility of the equivalent transformation condition between time-domain and frequency-domain 
are numerical verified by the dynamic response analysis of multiple particles damp system and long span
structure subjected to seismic wave excitation. The numerical results showed that the trigonometric coefficient
method (TCM) and DFT method are identical in calculating the spectrum of frequency. Furthermore, the
advantage of the former is the continuity of output frequencies. 
 
 
2. EQUIVLENT CONDITION OF VIBRATORY MOTION FORMULATION BETWEEN

FREQUENCY DOMAIN AND TIME DOMAIN 
 
Vibratory motion can be described in terms of displacement )(tx  by three ways, which will be presented as
follows: 
 
(A) The motion )(tx can be expressed by trigonometric notations: 
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Where nA  represents the displacement amplitude, nω  is the circular frequency, and nϕ  is the phase angle. 
 
(B)The motion )(tx can be considered as a summation of simple harmonic functions; it can be expressed by
using trigonometric notations: 
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Where the trigonometric coefficients are  
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And an Tn /2πω = , aT  is the duration of the motion, 0a represents the average value of )(tx  over the range
0=t  to aTt = . 

 
(C) The motion )(tx can also be expressed in exponential form. 
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Where nc  is the spectrum of circular frequency nω , nc  is the spectrum amplitude of the circular 

frequency nω , it can be presented as 
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Equation (2.2), and equation (2.4) is different formulation of )(tx , they are equivalent in the framework of 
mathematics [7]. 
 
The relationship between nc and na , nb  can be derived directly from the exponential form of the motion by
using Euler’s law. 
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Form the equation (2.6), we can conclude that the trigonometric coefficients na and nb reflect the real part and 
imaginary part of nc , respectively. Hence, except for DFT method, we introduce a new method to obtain the 
spectrum; it is referred as the trigonometric coefficient method (TCM). In fact, at the specific frequencies, we 
may be not got its spectrum by DFT method because of the discrete frequencies interval ωΔ . In order to 
remedy this point, it is usual to add a long segment of zero value at the end of motion duration, and then capture 
the spectrum approximatively. In doing so, the information of the time history of the motion will be destroyed 
to a certain extent. Alternatively, there are analytical formulations for na  and nb , so the spectrum of any 
circular frequency nω can be obtained accurately by TCM. 
 
3. FORMULATION OF DYNAMIC RESPONSE ANALYSIS OF STRUCTURE IN FREQUENCY

DOMAIN AND TIME DOMAIN  
 
In the process of dynamic response analysis of structure, the time history of the motion mainly consists of
seismic wave excitation and output structure response. In the frequency domain, the seismic wave excitation 
can be described as complex exponential form or their summation; accordingly, the output response of the
structure can also be described as complex exponential form. 
 
In the time domain, the seismic wave excitation is expressed in the form of time history, based on that, how to
construct the equivalent seismic wave excitation between time domain and frequency domain and how to
understand the output response of the structure, it is one of most important and interesting topics in earthquake 
engineering. In general, this problem can be summarized as two points. One point is: only the real part or
imaginary part of the seismic wave excitation is inputted, the complete response of structure in the frequency
domain can be obtained. The other point is: the real part and imaginary part of the input motion need to input, 
respectively, and then the complete response of structure in the frequency domain can be obtained by
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combining the response of the structure in time domain. In the next section, we will take damped system for 
example and discuss this problem in detail. 
 
3.1. Response of damped system subject to periodic loading in frequency domain 
In order to evaluate the dynamic response of a damped system, the differential equation of motion must be
solved. First, the equation of motion can be written as 
 

ti nePuuu ωωζω 0
22 =++ &&&                                                      (3.1) 

Where ω represents the natural circular frequency of the system, the response of the system can be related to
the loading by 
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Where 0U  is the amplitude of response in frequency domain, substituting equation (3.2) into the equation of 
motion gives  
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The amplitude of response in frequency domain is  
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3.2. The relationship between Response of damped system in time domain and in frequency domain 
There are two types of external loading in time domain under which the dynamic response of the structure is
equivalent to the response in frequency domain. 
First, the equation of motion of the damped system subject to the real part of the external loading ti neP ω

0 is 
written as 
 

tPuuu nωωζω cos2 0
2 =++ &&&                                                 （3.6） 

 
The general solution to the equation of motion for damped forced vibration can be obtained by combining the
complementary and particular solutions. Note that the complementary solution, which describes a transient
response caused by the requirement of satisfying the initial conditions, decays with time. After the transient dies
out, only the steady-state response described by the particular solution remains, so only steady-state response 
solution is produced as follows 
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The trigonometric coefficients of equation (3.7) na and nb are obtained by the TCM 
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Compared with the amplitude of response solution in frequency domain, which is written as equation (3.4), it is 
obvious that the formulation of nn bia ⋅−  is consisted with 0U , na is the real part of the 0U , - nb  is the 
imaginary part of the 0U . 
 
Second, the equation of motion of the damped system subject to the imaginary part of the external 
loading ti neP ω

0  is written as 
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The steady-state response solution of equation (3.9) is written as  
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In the same manner, the trigonometric coefficients of equation (3.10) na and nb  are expressed as 
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Compared na and nb  with equation (3.4), the formulation of )( nn biai ⋅−  is the same as the amplitude of 
response solution in frequency domain, where na  is the imaginary part of the 0U , nb  is the real part of the 0U .
 
From the comparison mentioned as above, if both the real part and imaginary part of the seismic wave 
excitation are inputted, it is not correct to obtain the amplitude of response solution in frequency domain by
combining the response of the structure in time domain. In reality, either the real part or the imaginary part of 
the seismic wave excitation is inputted in time domain, it is convenient to obtain the amplitude of response 
solution in frequency domain from the time history of response of structure in time domain. As a result, it also
supplies a tool to verify advanced time domain algorithms in frequency domain. In section 4.1, the validity of 
TCM is proved through dynamic response analysis of multiple particles damp system.  
 
In the same way, through TCM, the response of structure, which is subjected to the seismic wave excitation 
included phase difference and amplitude decay in frequency domain, can also be obtained. It also provides
theoretical foundation for dynamic analysis of long span structure subjected to multi-support seismic wave 
excitation. In order to verify its availability and accuracy, the TCM is practiced on a single span bridge 
structure in section 4.2. 
 
 
4. NUMERICAL EXAMPLES 
4.1 Dynamic response analysis of multiple particles damp system 
The multiple particles damp system shown in Figure 4.1 is at rest when the harmonic 
loading tiePF ω

01 =  is applied, where 0P is 24.5N, ω is 20rad/s. Determine the 
amplitude of response of particle 2. The Rayleigh damping scale   
                                                                  Figure 4.1 calculation model



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

coefficient is 05.0=ζ , accordingly, the natural circular frequency of first mode shape is 1ω =32.418rad/s，the 
natural circular frequency of second mode shape is 2ω =10.05rad/s.  
                                                     
First, the equation of motion is written as                                  
                                                                     

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
−

−
+

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
−

−
+

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
034562304

23042304
97473.1142592.5
42592.526176.9

50
05 0

2

1

2

1

2

1
tieP

u
u

u
u

u
u ω

&

&

&&

&&

       (4.1) 

The solution to this equation can be represented as tieuu ω
11 = , tieuu ω

22 = , the analytical solution of particle 2 
obtained as 
 

iu 000171959.0115293.2 −−=                                                 (4.2) 

So the amplitude of the response of particle 2 is || 2u =0.01153m. 
Second, referring to section 3.2, the equation of motion of the damped system subject to the imaginary part of 
the external loading ti neP ω

0  can be written as (4.1), where the ti neP ω
0  is replaced by )20sin(5.24 t .

Furthermore, The solution of equation can be obtained by the Precise Time-Integration Method [8], where 
)(2 tu  is plotted in Figure 4.2. 
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Figure 4.2 Response of particle 2             Figure 4.3 Frequency spectrum of particle 2 

 
Using TCM, the trigonometric coefficient na  and nb of )(2 tu  can be obtained, based on that, the amplitude 
of response in frequency domain can be got by )( nn biai ⋅− . At the same time, the DFT [9] method is used to 
get the amplitude of response. The comparison of the results of spectrum is displayed in the Figure 4.3; the 
value of amplitude of response is compared in the Table 4.1. 
 
                    Table 4.1 Comparison table of results in different methods 

 Real part (m) Spectrum (m) 

Analytical solution -0.01153 0.01153 

trigonometric coefficient method (12) -0.01105 0.01140 

Relative Error -4.16% -1.13% 

trigonometric coefficient method (24) -0.01113 0.01143 

Relative Error -3.47% -0.87% 
FFT(19.8946) -0.00827 0.01078 

Relative Error -28.27% -6.55% 
DFT(19.8946) -0.00647 0.01078 

Relative Error -43.89% -6.48% 
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The real part and spectrum of the response of the structure in frequency domain at the specific circular 
frequency of 20rad/s are listed in table 4.1, the “12” in the bracket means the duration of )(2 tu  in time domain 
is 12s, in the same manner, the “24” in the bracket means the duration of )(2 tu  in time domain is 24s, the 
“19.8946” in the bracket is approximate to the specific circular frequency of 20rad/s, because the DFT method 
can not capture the frequency of 20rad/s accurately. The analytical solution is obtained by equation (4.2). 

From the results shown in Table 4.1, the TCM agrees with the analytical solution very well, and as the duration
of the )(2 tu  increase, the relative error is decrease. Compared with DFT, there are analytical formulations for 

na  and nb , so the spectrum of any circular frequency nω can be obtained accurately by the TCM. While there is 
a certain interval of the circular frequency nω in the DFT method, sometimes, it is inevitable to approximate
the specific circular frequency. So the TCM is better than the DFT method in the output of the frequency
information.                      
                       
4.2. Dynamic response analysis of long span structure 
For earthquake engineering problems, dynamic loading often results from vibration of the supports of a system 
rather than from dynamic external loads. To evaluate the availability of the TCM in such systems, an example
of dynamic response analysis of long span structure is presented in this section. In Figure 4.4 is a simple single 
span structure. 
 

A BEA2   EI2   l2

EA1  
EI1  
l1

vgC D vg

EA1  
EI1  
l1

 
Figure 4.4 calculate model 

 
Where 11 =EI , 22 =EI , 11 =EA , 22 =EA , 11 =l , 22 =l , 521 == mm . the natural circular frequency of first 
mode shape is 1ω =0.447rad/s,the natural circular frequency of second mode shape is 2ω =1.183rad/s. The 
particle C and D are subjected to a horizontal excitation tie ω and )( ϕω −tiAe , respectively, in which A is 0.6, ω is 
20rad/s, ϕ  is 1.0. Determine the response of particle B. 
First, for this case of base shaking the equation of motion can be expressed as 
 

gvmrkuucum &&&&& −=++ 【10】                                                     (4.3) 
 
Where gkkr 1−−= , { }Ttiti

g eev )120()20(  ,  −=&& , { }Tu 4321 u, u , u, u = .The expression gv&&  in the right of equation 
(4.3) represents the free-field input acceleration applied at the base of the structure. In a more general case,
where the relative displacements are not all measured parallel to the ground motion, the total displacement may
be expressed as the sum of the relative displacement and the quasi-static displacement that would result from a 
static-support displacement. 
According to theory of dynamics of structure, the solution of equation (4.3) is written as 
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Substituting equation (4.4) into equation (4.3), the horizontal response of particle B in frequency domain is
obtained as iu  60.000112360.002278303 += .Accordingly, the spectrum value of the particle B is 

|| 3u =00022811m 
Second, the imaginary part of the complex horizontal excitation is represented at the base of the single span
structure, the equation of motion can be written as (4.3), where { }T

g ssv 1)-in(20t0.6 in20t,  =&& , through the 
coefficient 0.6, the decay of the amplitude of the seismic wave is considered. The time lag between C and D is
1s, which reflects the excitation time is different at different support. 
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   Figure 4.5 Time history of horizontal          Figure 4.6 The horizontal spectra of particle B 

displacement of particle B                  
 
The solution of equation is obtained by the Precise Time-Integration Method [3], where )(3 tu is plotted in 
Figure 4.5. na and nb of )(3 tu  can be obtained by the TCM. And the response solution in frequency domain 
is expressed as )( nn biai ⋅− . In other sides, the spectrum at the specific frequencyω is also got by the DFT. The 
comparison between the spectra curve is shown in the Figure4.6. The value of amplitude of response is 
compared in the Table.4.2  

Table 4.2 Comparison between theory solution and the numerical solution 
               on the horizontal spectra of particle B 

Duration of time history of response 24s 48s 

Theory solution 00022811 00022811 

trigonometric coefficient method 00022594 00022608 

Relative Error -0.95% -0.89% 

From the Table 4.2, the horizontal spectra of particle B obtained by the TCM agrees well with the theory 
solution, the relative error does not exceed 1%. And the accuracy of the calculation will be improved if the 
duration of time history of response is longer. As shown in Figure 5, the difference between the spectra which 
calculated by the DFT and the TCM is very small, but in the method of DFT, the duration of the response is 
divided into N equal intervals tΔ , as a result, the spectra can only be obtained at the discrete frequencies. 
Compared with DFT, the TCM can be output the spectra at the consecutive frequencies. 
 
 
5 CONCLUSION 
 
In this paper, through derivation and the numerical example of the equivalent condition between the TCM and 
DFT, the conclusion is summarized as follows: 
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(1) The spectrum at any frequencies can be obtained by the TCM, accordingly, the relationship between 
trigonometric coefficients and spectra nc  is written as 
 

annn Tciba /2=−                                                            (5.1) 
 

(2) In reality, the TCM is a powerful tool to transfer response of structure from time domain to frequency
domain. As far as the dynamic response analysis of structure is concerned, the real part or imaginary part of the 
external loading can only be applied on the structure, and then calculated the time history of the structure
response, the na and nb  of the response is obtained by the TCM.  Accordingly, the response of the structure 
in the frequency domain can be expressed as nn bia ⋅− or )( nn biai ⋅− . 
 
(3) We compute the numerical results of the dynamic response analysis of multiple particles damp system and
long span structure and compare them with the results obtained by the DFT as well as the theory solution. The 
comparison verifies the availability and accuracy of the TCM. And it is also shown that the traveling wave 
effect and amplitude decay of the wave can be considered in this method. In future, this method can be used to
do the dynamic response analysis of long span structure subjected to multi-support excitation  
 
(4) In the previous methods of generating artificial ground motions compatible with response spectrum, the
target spectrum is usually obtained by the statistical method based on phase-difference spectrum and Fourier 
amplitude spectrum [11]. The TCM introduced in this paper can be used to get spectrum of arbitrary frequency,
so the spectrum of the specific frequency can be set as a target parameter, it is possible to evaluate the
constraint equation to produce some artificial ground motions on basis of the parameter optimization. 
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