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ABSTRACT : 

The seismic behaviour of masonry structures strengthened with fibre-reinforced polymer (FRP) materials has 
received very little attention experimentally and theoretically.  The non-linear nature of these systems often 
results in mechanical responses that are difficult to predict via classic analytical methods.  A neural network 
(NN) approach for dynamic system identification is presented here.  This method addresses aspects such as 
system non-linearity, dependence on past loading history and noise contamination.  Full-scale seismic tests 
conducted at Bristol University provided a large dataset of measured and computed dynamic state variables.
The NN is capable of predicting the system response under a wide range of seismic inputs and for various
user-specified reinforcement ratios.  The results indicate that the NN non-parametric approach has an 
important potential in dynamic system identification. 
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1. INTRODUCTION 
 
Numerous investigators have explored the potential use of FRP on masonry structures in order to improve their 
capacity and ductility under in-plane or out-of-plane loading (Tikalsky et al. 1995, Velasquez-Dimas et. al. I 
2000, Tumialan et al. 2003, Krevaikas and Triantafillou 2005).  However, the behaviour under true seismic 
loading has received very little attention and mostly tests under ‘simulated earthquake loading’ (large number of
cyclic tests) have been reported (Ehsani et al. 1999).  Simple analytical methods to assess the out-of-plane 
behaviour of unreinforced masonry (URM) or FRP-reinforced masonry panels were developed based on the
flexural theory present in the building codes(Velasquez-Dimas et. al., II, 2000, Hamilton and Dolan, 2001).  The 
general trend has been to adapt the monotonic loading assessment methods for seismic loading as well, but the
developed models have not been validated through dynamic experimentation.  In general, the previous analytical 
methods could not provide the sophistication needed to describe the complex non-linear and hysteretic behaviour 
of a real life FRP reinforced masonry structure.  The main shortcoming of any empirical approach is that it is
based on human assumptions regarding the form of the relationship between the inputs and the outputs of the 
system.  In general, the analytical assumptions are based on parametric studies that depend on the accuracy of the
measured data which is often noise-contaminated, incomplete and incoherent.  The difficulty of taking detailed 
measurements of structural response leads to unreliable approximations of dynamic stiffness and damping. 
Under these circumstances, the authors believe that the neural network approach is suitable in describing the
complex mechanics of an FRP-reinforced structure under seismic loading.  The advantage of the NN approach is 
that there is no need for an a priori assumption about the input-output link.  More than that, the neural networks 
can model systems with large numbers of variables and wide ranging inputs.  They are resilient to noise and have 
proved effective in handling non-linearity and hysteresis in many engineering applications.  Neural networks 
entered the civil engineering field in 1990, when Ghaboussi et al. employed them for the first time in constitutive 
modelling.  Many other authors have since taken the same route in modelling (Billings and Chen 1992, Chen et 
al. 1995, Bani-Hani et al.1998).  A comprehensive review of their use in structural identification was made by
Adeli and Jiang in 2006. 
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2. SEISMIC TESTING OF FRP-REINFORCED MASONRY WALLS 
 
Previous tests conducted at Bristol University by Taylor (1998) showed that the unreinforced masonry (URM)
infill panels have a non-linear behaviour under seismic loading and that their mechanical response is highly
dependent on structure’s boundary conditions.  The experimental findings obtained on URM constituted the
starting point for a recent programme of testing on masonry walls strengthened with FRP.  Full-scale seismic 
tests were carried out on masonry infill panels (L x l x h = 3 m x 2 m x 0.1 m) with different FRP reinforcement
ratios (RR = 0, 0.4, 0.6 and 1).  The reinforcement ratio represents the percentage of wall area covered by the
composite fabric.  All panels were top and bottom supported.  The applied seismic input was based on an 
elastic response spectrum for Soil B according to Eurocode 8.  The design response spectrum is presented in 
Fig.1(left) and the matching shaking table displacement time history for an amplification factor (AF) of 65 % is
given in Fig.1(right).  Amplification factors (AF) ranging from 0 to 130 % were applied to the shaking table
displacement time history.  Therefore, a wide range of motion inputs was employed in testing and a large set
of structure response data was collected.  The applied ground acceleration, the wall displacement and the wall
acceleration at midheight, as well as the support reaction forces were measured during testing. 
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Figure 1  Design response spectrum acc. to Eurocode 8 (left) and  

matched shaking table displacement time history for AF=65% (right). 
 
The unreinforced masonry behaved elastically in the initial stage of loading and at low seismic inputs (AF less
than 60 %).  Its arching in vertical plane was almost symmetrical.  When the AF reached 65 %, the URM panel 
developed a horizontal crack at midheight along its entire width and continued arching in the vertical plane.  This 
stage is associated with increasing out-of-plane displacements and crushing of masonry at the contact between the
two rotating panel segments.  Small translation movements and crushing of the top mortar layer against the panel
frame took began to occur.  An average quadratic potential well has been fitted for the entire time series in order
to understand the pattern of mechanical behaviour.  Figure 2 (left) shows how the URM panel’s potential well 
shifts about the origin of motion (AF=90%).  The isolated peaks of strain energy are associated with masonry
crushing.  Figure 2 (right) shows the average potential well fitted for the whole time history of the test SEU1-110 
that lead to the URM panel’s collapse. 
 
By adding various amounts of reinforcement to the panels, significant changes in mechanical response took
place.  High reinforcement ratios lead to important increases of panel stiffness and natural frequency of 
vibration.  The FRP reinforced panels behaved like rigid blocks and very small out-of-plane rotation angles 
were inferred from the displacement measurement. No cracks occurred in the reinforced panels and their
behaviour was elastic.  The experimental results show that the URM and the FRP-reinforced panels behaved 
differently under seismic loading.  The experimental tests resulted in 64 mechanical response records for four
reinforcement ratios.  These records were the source of training and testing for the neural network employed in
dynamic model identification.  The state variables were the panels’ displacement and velocity relative to
ground, i.e. the shaking table kinematics history was taken into account.  
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Figure 2  URM panel’s average potential well at AF=90% (left) and AF=110% (right) (SEU1). 

 
 
3. NEURAL NETWORK FOR SYSTEM IDENTIFICATION 
3.1. Characterization of dynamic state 
If the masonry panel is considered a SDOF (single degree of freedom) system under seismic loading and no 
other external forces apply to it, then its equation of motion takes the following form: 

 
  (3.1) )()()()( tGMtKXtXCtXM &&&&& =++

 
where M , and are mass, damping and stiffness matrices, is the displacement vector and is the 
applied ground acceleration.  Eqn. 3.1 can be solved in incremental form using, for example, a step-by-step 
integration method and it poses no problems for linear or non-linear elastic systems.  Therefore, when given 
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can be completely determined.  However, for non-linear hysteretic systems, the issue becomes more 
complicated.  When representing the evolution of a non-linear dynamic system in phase space diagram, one 
can see that the position of the system at step 
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Figure 3  Indeterminacy of dynamic state for a non-linear hysteretic system 

 
From point , the system could follow different trajectory paths if its past memory is not retained in one way
or another.  In short, for non-linear hysteretic systems, the state variables 

k
)1( +kX and depend no)1( +kX& t 

only on and but also on the history of the state variables , ,…)(kX )(kX& )1( −kX )2( −kX )( lkX − , 
respectively ,  … , where  is a lag parameter that characterizes the hysteresis 
in the force-displacement loop.  The estimation of  is not a straightforward enterprise in analytical sense.
When a neural network is used, the indeterminacy of state variables at step  will be associated with 
noise, unless the past state variables are given as inputs.  In general, the more information about the past is 

)1( −kX& )2( −kX& )( lkX −& l
l

1+k
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given, the better the neural network will discern between noise and physical data. 
 
3.2. Neural network: architecture and mode of operation 
The neural network code was written in Matlab ™ (Version 7.1, Neural Network Toolbox).  The layout of the 
NN’s mode of operation is given in Fig.4.  The network inputs are the wall reinforcement ratio, the ground
acceleration time history, the displacement and the velocity at chosen steps in time: , ,…k 1−k lk − .  The 
outputs are the state variables (displacement and velocity) at step 1+k . 
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Figure 4  NN for dynamic system identification 

 
The detailed architecture of the NN for 12 inputs (i), 2 outputs (a), 3 hidden layers of 8 neurons each and 1 output 
layer is given in Fig.5 below. 
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Figure 5 Architecture of the feedforward NN employed (i: inputs, a: outputs, f: transfer function, W: weights).

In this example the state variable inputs were )(kX )10(, −kX )100(, −kX )1000(, −kX ,
respectively , , , .  According to some authors, three layers o)(kX& )10( −kX& )100( −kX& )1000( −kX& f 
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active units can represent any pattern classification (Beale and Jackson 1990).  The neurons are connected by 
multipliers named ‘weights’.  They also incorporate ‘biases’, which are scalars added to the input signal to
displace the curve of the neuron’s transfer function.  The transfer function employed in the internal layers was
the ‘tansigmoid’ function, given by:  

  (3.2) 1)1()( −−+= xexf λ

 
where λ is the gain coefficient employed to control the slope of the transfer function.  The ‘tansigmoid’ function 
presents the advantage of relating a wide ranging input to a finite output range.  Multiple layers of neurons with 
biases, sigmoid transfer functions, and a linear output layer are capable of approximating any function with a
finite number of discontinuities (Demuth and Beale 1990). 
 
The dataset employed in training and prediction is given in Table 1.  The training session took place in four 
stages: assembling the training data, creating the network object, training the network and simulating the NN
response to new inputs.  The experimental variables (displacement and velocity) employed in training are shown 
in Fig.6.  
 

Table 1 Datasets for training and testing the NN (AF – amplification factor of seismic input, RR – 
reinforcement ratio). 

NN operation AF (%) RR Test Code Comments 
35 0 SEU1_35 
60 0 SEU1_60 

110 0.6 SER2_110 
40 0.4 SER3_40 
60 0.4 SER3_60 

Training 

80 0.4 SER3_80 

Sampling frequency: 500 
Hz 

 

110 1 SER1_110 New unseen RR Prediction 
100 0 SEU1_100 New unseen AF 
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Figure 6  Training set (left: displacement, right: velocity). 

 
The NN uses the default performance function associated with the feedforward networks.  The performance 
function is the mean square error between the outputs of the network and the target outputs from the experimental
data set, defined by: 

  (3.3) 2)(5.0
i

taE ik −Σ=
 
where  is the global network error after  epochs of training, is the NN prediction of output and  is
the target value of output .  The system splits the experimental data randomly in two equal sets: the training se

kE k ia i
i

t
i t 

and the test set.  The training set is used for learning the pattern connecting the inputs to the outputs, while the
test set is used in a post-training analysis (regression analysis) to evaluate the network’s performance.  The 
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training pattern consists of an input vector [ ])1000(),...(),1000(),...(,, −− kxkxkxkxRRG &&&&  and a desired 
target vector [ )1(),1( ]++ kxkx & .  The standard backpropagation with the gradient descent algorithm was used in
training: the errors were passed back down the network and the weights between the neurons were adjusted in the
direction of the negative gradient of the performance function Eqn. 3.3.  The literature describing the details of 
this commonly-used learning algorithm is very extensive (see for example Demuth and Beale 1990 and 
Veelenturf 1995).  At the beginning of training, the weights and biases are initialized with random values.  Then 
the set of training inputs is shown to the network.  During each training iteration (epoch), the network uses its
own transfer functions to approximate the relationship between the given inputs and the target outputs.  At the 
end of each epoch the error between the NN outputs and the target outputs times the learning rate is used to adjust
the weights of the network.  The learning rate is a multiplier with values between 0 and 1, which determines the
rate at which the NN converges towards a stable solution. 

 
 w[l]

mn
[p]= w[l]

mn
[p-1] - η g[l]

mn (3.4) 
 g[l]

mn
 = ∂Ep / ∂ w[l]

mn
[p-1] (3.5) 

 
where w[l]

mn
[p]

 is the weight connecting neuron no. m from (l-1)th layer to neuron no. n from lth layer at the end of 
epoch no. p,  g[l]

mn
 
 is the current gradient of the error surface, η is the learning rate and Ep  is the global error 

between the NN output and the target output after p learning sessions.  The algorithm of gradient descent was 
implemented in batch mode, i.e. all the inputs were applied to the network before the weights were updated.      
 
3.3. Predictions and performance of the neural network 
The trained NN was saved in order to be employed in future predictions.  Two new sets of inputs were selected in 
order to test the prediction capability of the NN: one set which involved a new unseen reinforcement ratio (RR=1, 
test: SER1-110) and one set which included a new unseen seismic amplification factor (AF=100, test:
SEU1-100).  The NN prediction for displacement and velocity for the unseen RR=1 is given in Fig.7 and Fig.8, 
respectively. 
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Figure 7  NN prediction of displacement for unseen new input: SER1-110 (RR=1, AF=110, right-detail) 

 
In order to estimate the strength of the linear relation between the predicted and the test state variables, a simple
linear regression analysis was performed.  The correlation coefficient was calculated as follows: R
 

 
TA

TAR
σσ

),cov(
=  (3.6) 

 
where is the covariance between the NN simulation (A) and the test set (T), and ),cov( TA Aσ , Tσ is the 
standard deviation of A and T datasets, respectively.  Results of the regression analysis are given in Fig.9 for 
new unseen RR and in Fig.10 for new unseen AF. 

 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

  
1000 2000 3000 4000 5000 6000 7000
-2

-1.5

-1

-0.5

0

0.5

1

1.5
NN10, prediction for SER1-110

sample no

ve
lo

ci
ty

 (m
/s

)

 

 

experimental
simulation

     
1000 2000 3000 4000 5000 6000 7000
-2

-1.5

-1

-0.5

0

0.5

1

1.5
NN10, prediction for SER1-110

sample no

ve
lo

ci
ty

 (m
/s

)

 

 

experimental
simulation

 
Figure 8  NN prediction of velocity for new unseen input: SER1-110 (RR=1, AF=110, 20000 epochs, right 

-detail). 
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Figure 9  Regression analysis between NN prediction (A) and test set (T) for unseen input: RR=1, AF=110 

(20000 epochs.  R – correlation coefficient) 
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Figure 10  Regression analysis between NN prediction (A) and test set (T) for unseen input: RR=0, AF=100 

(20000 epochs.  R – regression coefficient) 
 
The learning rate and the number of training iterations are, in general, problem dependent.  A larger and noisier 
data set would require a smaller learning rate and a larger number of epochs of training.  The number of training 
iterations employed in this research varied between 10000 and 100000.  It was found that most NNs reached a 
stable solution after 20000 epochs of training.  Theoretically, if the rate at which the weights are adjusted (η) is 
progressively decreased during training, then the network will be able to avoid the danger of overshooting while
moving its outputs closer to targets.  
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4. CONCLUSIONS 
 
The present work demonstrates that the NN technique is a viable method for dynamic system identification.  The 
neural network could incorporate enough knowledge about the dynamic evolution of stiffness and damping, in
order to predict the dynamic state of the system when new unseen inputs (RR and/or AF) were employed.  Since 
the NN training involved both data of elastic and of plastic response, the prediction proved satisfactory for both
URM (see SEU1-100 cracked panel) and the FRP-reinforced panel (see SER1-110, intact panel).  The datasets 
for training can be expanded for a wider range of seismic inputs and reinforcement conditions.  In principle, the 
larger and more complex the training set is, the better is the NN in predicting outputs for unseen inputs.  The 
advantage of any trained network is that it can be saved and used both offline as an instrument of prediction or
on-line as a control tool.  The present work dealt only with its off-line use, but future research may consider its 
use in a neuro-controller intended for real life structural systems.  This research was part of the LESSLOSS 
(Risk Mitigation for Earthquakes and Slides) project, funded by the European Union under grant no. GOCE
-CT-2003-505488.  Their financial support is gratefully appreciated. 
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