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ABSTRACT :

The goodness of time integration algorithms commaisied in earthquake engineering is characterizeiis
paper by the ratios of their transfer function lte bnescorresponding to the exact integration operatbis
approach permits to appraise very easily how tfferdnt components of the seismic action are adfitty th
oscillator and to quantify the adequacy of ihtegration scheme as the excitation frequengyocaghes tt
Nyquist frequency. Using this methodology, the efeof various temporal algorithnGsecursive digital filters
on the accuracy of the seismic response of lingstems are investigated, thdor Duhamel integral methc
and for timestepping methods. Analytical solutions are appleedeveral examples of discrete and contin
linear systems to elucidate the influence on therall error of the unknown variation of the inpubtion
betwea sampling points, as well as the uneven distorobnhe frequencies introduced by the integre
process.
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1. INTRODUCTION

Generally speaking, tienintegration algorithms are nothing else but lire@mbinations of the numerical d
(base points,;,tand function to be integrated, Xt derived from polynomial approximations of then€tior
X(t;), either for equidistant points (Newton-Cotes med) or for points located at newgual time interva
(Gaussian quadrature methods). In this paper, stéaethe analysis to four well known integratimethods ¢
the first category, namely the trapezoidal, Simfsonectangle and mid-point rules, whi are show
schematically in Fig. 1.
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Figure 1.- Quadrature rules: a) rectangle; b) zakal; c) Simpson’s; d) mid-point

The mathematical formulation of these four methisdsdicated in Table 1.1:

Table 1.1
Trapezoidal rule Simpson’s rule
h h
yn+1 = yn +E(Xn + Xn+1); n= 0712! (11) yn+1 = yn—l +§(Xn—l +4Xn + Xn+1); n= 1’2!3' (12)
Rectangle rule Mid-point rule
Yo = Y, +hx,; n=012,... (1.3)| Yo =Y, +hX .y Nn=012,... (1.4)
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where h=t, -t (j>i),and y(t)= j x(t)dt (1.5)

Since this research focuses saismic signals, rapidly varying with time, it isiportant to analyze tl
frequency response of the above integration rihestder to elucidate the distortion introducedthgm in th
frequency content of the signals being integrated.

2. TRANSFER FUNCTIONS OF QUADRATURE RULES

The integration schemes of Egs. 1.1 - 1.4 can laeackerized as recursive digital filters of caugpke with
memory. Therefore, according to Hamming (1977)jrtdegree of accuracy for a given fremcy can k
estimatedby computing the ratio between the transfer fanctof the numerical (approximate) and
analytical (exact) temporal operators. To do soingat complex harmonic signali’gis assumed. Sindbe
above equations are all linear, the output sigftat antegration will be of the type H{)€®', where H(b) is the
complex transfer function of the integrator ant the angular frequency (Fig. 2).

a (t) J‘ v (t) J‘ J‘ d (1)
elwt H (lw) elwt [H (I(.L))]z elwt

Figure 2.- Transfer functions of time integratigrecators applied to a seismic acceleration record

Then, for the ideal integrator it is found
H (i)e = y(t) = [e“dt ="~ (2.6)
lw

(@) = e s |H (0]=2; dla=-2 @7
I w 2

ianh

whereas for the quadrature rules, makikg=¢€“" and y, = H(iw)X, in Egs. 1.1-1.4, the expressionis
Table 1.2 are derived (n=number of sampling poimat=discretization time interval).

Table 2.2
Trapezoidal rule Simpson’s rule
, h  wh. -% . h 2+cos@h) -7
H = cot(—)e 2 28) | Hliw)=———F—"""e 2 2.9
(iw) 2CO(2 )e (2.8) (i) 3 sin@h) (2.9)
Rectangle rule Mid-point rule
PO B Vi YL
H(iw) = —ahe (2.10) | H(iw) = —ahe (2.11)
2E$in(7) ZE‘Bin(?)

The moduli of the complex-variable functions 2.8.21,normalized with respect to that of the ideal ingegi
(Egn. 2.7), are represented in Fig. 3-a, and thesponding normalized phases angles are drawigir3. In
both diagramsoy=n/h is the so-called circular Nyquist frequency, efhis the maximum frequency thezdn b
reachedf “aliasing” effects are to be avoided. From thepection of Fig. 3, the following observationg
made:

1) The rectangle, mid-point and Simpson’s formulae lggnphe amplitude of the signals throughout
whole frequency range (especially for harmonicsvabonehalf of Nyquist frequency), whereas
trapezoidal rule attenuates progressively all thguencies in the interval (@y).
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2) The rectangle rule (also called “simple summatiahe™ is the only one that introduces a
frequency-dependent phase shift in the integrgifosess which leads to baseline drifts disdortion:
in the shape of the integrated signal (Fig. 3-b)ngequently, the use of the rectanglle is nc
recommended for solving earthquake problems inne®ging practice.
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Figure 3.- Normalized transfer functions of quadratrules: a) amplitude values; b) phase angles

The practical implications of the abowehavioral patterns are quite evident. Consider,efkample, tr
simulated accelerogram proposed in the literatyrBdgdanoff et al (1961)

y(t) = Bte™ Z coswt+@) (2.12)
j=1

with B=0.292 ando=-0.333;n is the number of harmonics with circular frequeseb; considered in tt
simulation, and®; are random numbers uniformly distributed betweean@ Z (Table 2.3).The artificial
accelerogram (2.12) is analytically integrabletladl way up to the response spectra, thus permitticglibrate
very easilythe effectiveness and accuracy of several integrahethods currently employed in earthqt
engineering. Besides, by choosing adequately thenpeieran ando; , the frequency content of theysal cau
be controlled at will.

Table 2.3
o 6.00 8.00 10.00 11.1% 12.3p 13.25 145 16{20 1%.38.15| 22.00
(rad/sec)
@ (rad) | 3.7663| 1.3422 4.8253 0.2528 4.5204 1.8834 1.3320852| 0.1517) 2.4881 1.7654
o 25.25 | 29.85| 3450 39.60 4645 53.00 58/60 66.75 157].74.80| 80.25
(rad/sec)
¢j(rad) 1.6632| 2.1867 0.832p 1.2387 2.3156 3.0012 1.0643848.| 1.5532 0.9586 2.3542
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Figure 4.-Simulated accelerograms (Bogdanoff et@81): a) standard; b) enriched in high frequesicie
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Thus, Figure 4-a depicts the simulated accelerogfarm= 22, and 6.00<; < 80.25 rad/sedOn the othe
hand, in Fig. 4-bn=5, and 58.60w; < 80.25 rad/sec. Integrating the accelerogramigf4~b by means of tt
Simpson’s and trapezoidal rules, with h =0.025(@8csample points per second), gives the diagrdriigs.
5-b and 5-c, while the exact velocigram is repre=gim Fig. 5-alt becomes obvious how the trapezoidal
truncates the high frequency peaks of the intedrsignal whereas the Simpson’s rule magnifies tipesks
an undesirable deleterious effect if spurious ndiseto poor processing of the signal is to be ebgoke

a) Analytical integration b) Simpson's rule c¢) Trapezoidal rule
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Figure 5.- Analytical a) vs. numerical integratit and c)] of the accelerogram shown in Fig. 4-b
3. SEISMIC RESPONSE OF 1 D.O.F. LINEAR SYSTEMS

3.1. Time-higtory analysis

The evaluation of the seismic response of a massgsgashpot systesubjected to an input base accelera
y(t) , requires to solve the classical second-ordenarglidifferential equation

U+ 2épu + p2u = —y(t) (3.13)

where p=2/T, is the natural frequency of the oscillatérjs the damping ratio andi,u,U stand for th
relative displacement, relative velocity, and righatacceleration of the oscillatoAssuming that the initi
displacement and the initigelocity of the system are zero (“at rest” coimdis at zero time), two possil
methods are available in the literature for soliom. 3.13:

» Direct integration of the differential equation X3), by numerical calculation of the salec
convolution integral or Duhamel’s integral

u (t) = _pi j y(r)e ™ sin[p, (t - r)]dr (3.14)
d o

»  Step-by-step integration of Egn 3.13, following atritial marching scheme of the type

un+1 _ un yn
(o msofsfoonely] o

In both cases, the accuracy analysis is basedeirtdmparison between the numerical transfer funsid
uand Uuand the corresponding values for the exact integradf Eqn. 3.13. It must be remarkduhat thi
procedure differs substantially from the classieabor analysis based on the amplitude decay and ¢
elongation of the free response of the undampetersyso an initial displacement (Humar,199&uch a
analysis considers only the matrix A (which goveires stability of the method), and does not take accouh
the forced terms of Eqn. 3.15 (Preumont, 1982).
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The transfer functions of a linear system are fesgy operators which characterize the ratio betwhe
kinematic responses of the system and the corrdgmpexcitations in the frequency domain. Teeuracy c
these complex-variable functions depends largelthemumerical method used to calculate the respufrtbie
system, as it is shown next.

a) Exact transfer functions

Substituting in Egn. 3.13:  §(t) =€“; u(t) = H, (iw)e“; ut)=H;({w)e“ =iaH (iw)e";
li(t) = —w’H, (iw)e'™, the following expressions for the stationary mese are found (Fig. 6)

1
o’ - p® -2iéap
H,(iw) =iaH (i wé) (3.17)
Hi(io) = -28pH,(iw) - p’H,(ie)  (3.18)

H. (iw) = (3.16)

where X(t) =U(t) + y(t) denotes the absolute acceleration of the osaillato
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Figure 6.- Moduli of the exact transfer functiorisbort period oscillator (;FO.1 sec).

b) Numerical transfer functions: Duhamel’s approach

In this method the numerical errors are due satetyre amplitude of the integration interval, hs{@@sedn this
work identical to the digitization intervalgnd/or the hypothesis made about the variatioth@fexcitatior
y(t) , between sampling points (Blazquez and Arcos, 4298 all cases thegansfer functions will be limite

to the uppermost value of the frequenayy, = 77/ h (Nyquist frequency) to prevent “aliasing phenonfena

Then, for a resting system, substituting in Eqh33§(7) = €“", and developing the integral, gives

1+ pH (iw)
Py H(iw)

H,(iwt) = H (i)

= 1-e (P9 cog(p,t) +
1+2£pH(ia))+p2H2(iw){ ( PsH

sin(pdt)ﬂ (3.19)

A similar expression has been derived by Lin (1963)the stochasticesponse of a linear system to a we
stationary random excitation, using a completelffjedént approach. Note that,fio,t) is a nonstationar
transfer function whose amplitude evolves with tiraecording to the transient nature of the seismettor
(Fig. 7). As expected, whemt « the expression in brackets in Egn 3t&8ds to unity, meaning that
stationary vibration phase has been reached. Uthdese conditions, substituting for exampité(ic) by
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H (iw)in Eqn 3.19, the value of the exact transfer funmctf u(t) for the analytical integratiod,, (i) , is

obtained. This procedure applies to any integratide used in conjunction with Eqn 3.19. Figs. 8ral 8b
exemplify this methodology for the Duhamel-trapeabiand Duhamel-Simpson methods applied to 5#%o
damped oscillators with natural periods 0.1 andd K can beeen in the figure that the opposite amplifica
trends of the two quadrature rules (Fig)3mark the behavior of the respective transfections outside tt
resonance band of the system.
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Figure 7.- Evolutionary transfer function a)

amplitudes of the relative displacement Figure 8.- Normalized displacement transfer functio
of a 1 D.O.F. system at the transie  diagrams for a 5%-damped system: (a) Duhamel-Simpso
(t < 7sec) and stationaryXvsec) phases. rule, (b) Duhamel-trapezoidal rule (Blazquez, 2007)

c) Numerical transfer functions: step-by-step intagratlgorithms

The way to proceed using this approach (Blazqued Ancos, 1999b)is to derive the functiol
H,(wh),H,(iw h) else solving the matricial Eqn. 3.15 as followsramberof sampled input value
[=unity matrix)

u, =H,(iwh)e";

H, (iw h)
H, (iw h)

u, =H,(iwhe" (3.20)

} =[e“™ - A(p, O] *B(p, E){emlm} (3.21)

or directly,from the mathematical scheme which defines thgraten algorithm. For example, for the cer
difference method (Newmark=1/2; =0 method),

Upyy =20, +U,
h2

) 1 ..
u, :_(un+1 _un—l); u, =

o (3.22)

substituting in Eqn. 3.13, written in discrete forrthe quantities:u, =H e“"; u _, =H e“"™";
Upg = Hueiw(nﬂ)h; y, = e“™ it results
1

H, (iwh) =
2-p? —2[005@1) +i

(3.23)

‘:'? sin(afn)j

which is the seismic transfer function of the methstrongly dependentothe amplitude of the integrati
interval, h.
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Note that Eqs 3.20, 3.21 and 3.23 apply only teetinvariant conditions that is when the transient phas
the forced vibration response has vanished- whdtgas3.19 is valid for the transient andistaary phases,
spite of the fact that the latter is not alwayschesl during seismic loading.oké also that, for the operat

H_,and H,being applicable in practice, they must comply wfté consistency conditions
H,(0)=H,(0); H,(0)=iaH,(0) (3.24)

as well as with the standard requirements of stalaihd convergence of the method.

In this research, the performance of fourteen tstepping methods has been investigated, incluthingg
Runge-Kutta methods 12 3° and 4" order), five Newmarky=1/2 methods{=0, B=1/4, f=1/6, B=1/8, an
B=1/12), three modified Newmark methods (HHT, WBZabH), and the Nigardennings, Wilsor® anc
Houbolt methods. Fig. 9 shows the normalizedsfenfunctions of the displacement, velocity andederatiol
of short and long period damped oscillators catedlausing three of the above methods, namel
Nigam-Jennings (N-J), Houbolt and central diffeeemoethods. It is realized from the figure that thd
method behaves smoothly throughout the whole rahgequencies, deamplifying lightly the responsénigr
and low frequencies for all types of oscillators: Be contrarythe other two methods show a strong resor
peak for all kinematic responses, diverging sigatfitly from the exact ones in that zone. Furtheemig. ¢
confirms that,whereas the central difference method amplifiesgdeously the excitation frequencies hic
than the natural frequencies, Houbolt's methoeiitttose frequencies, which are not accurately inted
and, consequently, are damped out in the respdiée.“numerical damping” effect is inherent to sele
integration methods (e.@Vilson 0), and acts similarly to modal truncation in theguency domain analysis
multi-degree-offreedom systems, leading ultimately to attenuateetctsal ordinates in the high freque
region. In practical computations, the presenceumherical denping is convenient, since it helps to main
the stability of the conditionally stable integoati methods, by keeping the high mode respon:
multi-degree-of freedom systems out of the solution
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Figure 9.- Normalizedraplitude transfer function diagrams of three tinepping methods for short and Ic
period 1 D.O.F. systems.
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Fig 10 visualizes the normalized phase anglesefN#, Houbolt and central difference methodisention is
brought to the fact that Houbolt's method introdiieemarked distortion in the phase angles of thporese,
since those angles become frequency-dependibist feature is undesirable and may explain tiar pccurac
of this method in solving certain dynamical probdem
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4 ‘ : ; , ; ‘
. 1 1 | h=002 sec . | | | h=0.02 sec .
3o e R I 2
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Figure 10.-Normalized displacement phase diagrams of three sitepping methods for short and long pe
1 D.O.F. systems.

3.2. Response spectrum analysis

As explained before, all the integmt schemes, even if they meet stability, convertgeand consisten
requirements, introduce numerical errors in thesrs@ response of 1 D.O.F. systems, which rest
misleading response spectra. Fig. 11-b displaypél& errors of the response teda to the analytical absolt
acceleration spectrum of the input record showign 4-a. It can be seen that the accuracy errors orotlec
vibration phase affect basically to the low pericaisd should no be confused with the amplitude ylecas
reported elsewhere (Humar, 1990) for the free widmgphase, that affect basically to long periostegs.It is
also observed that the Nigam-Jennings method and%brder Rungeutta method (Heun’s method) prov
very similar results (Fig. 11-a). Th& ®rder Runge-Kutta method, somehow less accuraterame costlyin

terms of computing time, was the standard for raspepectra calculations prior to 1968 (Nigam amhihgs
1969).
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Figure 11.- a) Numerical vs. analytical absoluteeteration spectra of the artificial accelerogrdrfrig. 4a; b
relative error of the numerical (approximate) spgotordinates with respect to the analytical (exaalues.

4. CONCLUSIONS

1) Algorithms that amplify significantly the upper hahrt of the Nyquist interval are very sensitioelte
presence of spurious high frequency noise in seisignals and should be avoided in dyn:

response computations.



th
The 14 World Conference on Earthquake Engineering
October 12-17, 2008, Beijing, China

2) Phase shift in integration schemes distorts thgugacy content and the shape of the excitatioralsgn
introducing unacceptable drift errors in the ingggd records.

3) In general, numerical transfer functions of 1 D.Gs¥stems (especially short period sysfestwow i
sharp peak at the resonance region of the oscijllditcerging considerably from the shape of thect
transfer curves in that zone.

4) Time-dependent Duhamel's transfer functions apply to tlamsient and stationary phases of
evolutionary seismic motions, while for step4tgp methods only the transfer functions of
stationary phases are computed.

5) Integration methods that introduce numerical dagp@nthe response of the system filter out the
frequencies from the system’s response. The ttiomcaeffect is very smooth and uniform
Nigam-Jennings method whiatheamplifies lightly the whole range of frequencies all types @
oscillators.

6) The amplitude of the integration interval is theimmaarameter controlling the stability and accuraty
seismic response of linear systems: the smallentbeval the greater the accuracy.

REFERENCES

Blazquez, R. (2007). Andlisis frecuencial de losadés de integracion temporal en Ingenieria SisrSiea
Congreso Nacional de Ingenieria Sismica, GironaifSi631-1655 (in Spanish).

Blazquez, R. and Arcos, A. (1999a). Numerical erinrthe computation of Duhamel’s integrai™Rercontre
en Génie Parasismique des Pays Méditerranéens [SFS89), Faro, Portugal, 435-444.

Blazquez, R. and Arcos, A. (1999b). Transfanctions of time integration algorithms used espons
spectrum analysis of earthquakes. Proceedingseofturth European Conference on Structural Dyng
(EURODYN'99), Prague, Czech Republic, 7-10 Jun&7:0093.

Bogdanoff, X.., Godberg, J.E. and Bernard, M.C. (1961). Respoofs a simple structure to a ranc
earthquake type disturbance. Bulletin of the Seisgical Society of Americeb1:2, 293-310.

Hamming, R.W. (1977). Digital filters. Prentice-Halternational, Inc., Englewood Cliffs, N.J.
Humar, J.L. (1990). Dynamics of Structures. Preiill, Englewood Cliffs, N.J.
Lin, Y.K. (1967). Probabilistic theory of structlidynamics. Mc Graw-Hill, Inc., New York.

Nigam, N.C. and Jennings, P.C. (1969). Calculatidnresponse spectra from stromption earthqual
records. Bulletin of the Seismological Society ohévica,56:2, 909-922.

Preumont, A. (1982). Frequency domain analysisimoé tintegration operators. Earthquake Engineerimg a

Structural Dynamicsl0, 691-697.

ACKNOWLEDGEMENTS

The authors express their gratitude to the Minisfrizducation and Science of Spain which providehgan:
scholarship funding in support of this researcljguot BIA 2007-67401).



