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ABSTRACT : 

Perfectly Matched Layer (PML) artificial boundary condition (ABC) gains amount of recognitions because of 
perfectly performance in the physical wave motion simulations. This paper focuses on the usage of PML method in 
near-fault earthquake simulations. Combining with velocity-stress hybrid finite element formulation, the 
applicability of PML is investigated and the numerical reflection of PML is estimated. The reflectivity of PML 
and multi-transmitting formula (MTF) is compared based on body wave and surface wave simulations. The
results show that although PML yields some reflection errors, its absorption performance is superior to MTF
boundary in the seismogram simulations, especially in corner and large angle grazing incidence situations. The 
PML does not arise any unstable phenomenon. The stability of PML is better than MTF boundary in hybrid
finite element method. For a specified problem and analysis tolerance, the computational efficiency of PML is
only a little lower than MTF. 
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1. INTRODUCTION 
 
Nowadays, numerous computational methods have been developed to solve the partial differential equations of 
physics. The absorbing boundary conditions (ABCs) simulate or replace the infinite space that surrounds a finite 
computational domain which is used to simulate unbounded domain behavior. However, the replacement is 
never perfect. The solution computed within an ABC is only an estimate to the solution that would be computed
within a really infinite domain. The construction of a suitable ABC is one of the most important problems in 
unbounded wave propagation simulations. Researchers had proposed many kinds of ABCs, based on kinds of 
wave motion equations which corresponding to different physical problems. The perfectly matched layer (PML) 
ABC was firstly proposed by Bérenger (Bérenger, 1994) in his study of electromagnetic wave simulation, 
which is a non-reflective ABC for any incidence with arbitrary-frequency and arbitrary-incidence angle
theoretically. 
Researches of PML improved rapidly in the past decay (Bérenger, 2007). The application of PML was extended 
to 3D Maxwell equation simulations by Chew and Weedon (1994) and Bérenger (1996) at the same time. Chew 
and Weedon (1994) proposed the concept of PML via a complex-coordinate transform and/or a complementary 
operators method, which established the theoretical basis for further extending PML to general PDE systems. 
Thereafter, PML was applied to various PDE systems, such as linearized Euler equation (Hesthaven, 1998),
poroelasticity wave equation (Zeng et al., 2001), acoustic equation (Liu and Tao, 1997; Qi and Geers, 1998;
Hagstrom and Hariharan, 1998) and elastodynamic equation (Chew and Liu, 1996; Hastings et al., 1996; 
Collino and Tsogka, 2001; Komatitsch and Tromp, 2003), etc. On the other hand, Collino and Monk (1998) 
studied the application of PML in curvilinear coordinate system. It should be noted that PML shows some 
weaknesses in the researches: (1) the applications of PML are limited for the first order PDE systems; (2) it is 
no longer perfect and yields numerical reflection after numerical discretization (Bérenger, 2007); (3) there is
few research contribute PML in seismic wave simulations. In the field of earthquake engineering, Basu and 
Chopra (2004) studied soil-structure interaction problem with PML, and Zhao et al. (2007) applied PML in the 
simulation of saturated poroelastic wave motion. 
Multi-transmitting formula (MTF), which was proposed by Liao and Wong (1984), is another widely used 
high-precision ABC. Theoretically, MTF boundary is also a non-reflective ABC. However, in the 
implementation of MTF, it performs instable phenomenon and lower precision than desired. This is partly due 
to the assumption of incidence as an ideal plane wave motion and some intrinsic factors of numerical algorithm
of MTF. In recent years, improvements of precision and stability of MTF was developed (Zhou and Liao, 2001).
PML and MTF boundaries are both high-precision and non-reflective ABCs in theory. However, they both yield 
reflections after numerical discretization. Because many influencing factors take effect on the reflectivity, it is
difficult to define appropriate error criteria for the comparison. This issue is attributed to the different
mechanism of the ABCs’ numerical reflection yielding. PML adopts specified complementary operators method
and modify the constitutive relationship, whereas MTF adopts polynomial approximation and assumption. The 
adoption of some common phenomenon simulation is the only favorable method to quantities the differences 
between the ABCs. In addition, a uniform algorithm for inner domain of both ABCs is indispensable since it is 
essential for obtaining reliable comparative results. 
This study presents the theory of PML briefly, especially the ‘perfectly matched’ characteristic which makes
PML can efficiently absorb wave motion with different frequency and incidence angles. Based on the hybrid 
finite element method, the seismic wave motions are simulated. The applicability of PML in seismic wave 
simulations is investigated. Based on these preliminary investigations, the reflectivity of PML and MTF ABCs 
is estimated. Furthermore, the differences between PML and MTF boundary are discussed and the absorption
efficiency of these two ABCs is compared. 
 
 
2. PML and MTF ABCs 
 
1.1 Perfectly matched layer ABC 
The basic mathematical principle of PML is introducing a complex coordinate transform into the PDE system. 
The complex coordinate transform is 
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where xi is the direction of specified coordinate, si is some continuous function of variable xi and !, 
respectively. Corresponding to different problems, xi can takes different form. The function si used by Chew 
and Liu (1996) is defined by 
 

 si = 1 + i
di(»)

!
 (1.2) 

 
where di(») is the damping function in the direction of xi and » is the distance from PML inner boundary to 
the integration point, respectively. Based on Eqn. 1.2, it is obviously that ~xi in Eqn. 1.1 will be reduced to xi. 
The general solution of outlet wave motion is an attenuation wave motion propagating in the PML region. The 
expression is given by 
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Eqn. 1.3 defines wave motion with exponential attenuation ratio. Hereby the energy of wave motion will be 
absorbed rapidly in PML domain. Due to ki=! is the wave speed in the direction of xi, the attenuation ratio is 
independent with the wave motion frequency (for non-dispersion wave motion). In the same way, the complex
coordinate transform used in Eqn. 1.1 is applied to the partial differential operator, i.e. the derivative on xi

direction, the operator will be 
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Based on Eqn. 1.1 and 1.4, the wave motion PDE system in PML region can be obtained. The solution of the 
new wave motion system in PML region maintains the attenuation characteristic in theory. 
 
 
1.2 Multi-transmitting formula ABC 
 
MTF boundary assumes that the incidence is a plane wave motion. MTF boundary transmits the incident and 
reflected wave motions to the outside of the boundary using the transmitting concept, and it precedes the 
transmission several times till the reflection error is small enough. The Nth order MTF is defined by 
 

 u
p+1
0 =

PN
j=1(¡1)j¡1CN

j u
p+1¡j
j  (1.5) 

 

whereCN
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ca
;¡j¢x ,́ and ca  is the assumed artificial wave speed, 

u
p+1
0  is kinematic variable (velocity, stress or magnetic field intensity, et al.) at (p + 1) time step on the 

boundary points, respectively. The most widely used MTF method is the second order MTF, which is given by 
 

 u(p¢t + ¢t; 0) = 2u(p¢t;¡ca¢t)¡ u(p¢t¡¢t;¡2ca¢t) (1.6) 
 
To gain a better understanding of the development and implementation of MTF boundary, the readers may refer 
to the book by Liao(2002). 
 
 
2. Velocity-stress hybrid finite element formulation 
 
The implementation of PML in this study is based on the elasto-dynamic wave motion PDE system. The 
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Newmark method is adopted to construct PML based on the velocity-stress time staggering scheme. In the 
numerical algorithm for solving PDE systems, Virieux stagger-grid formulation (Virieux, 1986) is recognized as 
an efficient method and was widely used in many simulations. This study follows Virieux’s stagger-grid concept 
and adopts hybrid finite element method. 
Velocity-stress formula of elasto-dynamic wave motion is defined as (using tensor expression)  
 

 

½
½ _v = 5 ¢ ¾

¾ = c : 5¾
 (2.1) 

 
with the initial conditions, v(x; 0) = v0(x) and ¾(x; 0) = ¾0(x). 
The construction process is based on Fourior transform which transforms the time domain wave Eqn. 2.1 into 
frequency domain wave equation. Substituting Eqn. 1.1 and 1.4 into the frequency domain wave equation, and 
considering damping function di(»), then applying the inverse Fourior transform, the PML formulation in the 
boundary region can be obtained (Chew and Liu, 1996). Following the stagger-grid (operator-splitting) concept, 
the equations are finally given by 
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 is the damping function, 5V = nn ¢ 5 , 5P = (I ¡ nn) ¢ 5  are the 

splitted gradient operator, where I  is the unit matrix, n is the normal direction of absorption boundary, δ is 
the depth of PML and R is the theoretical reflection ratio, respectively. This operator-splitting operation splits 
the wave field into two parts. One part is the wave motion propagating in the direction parallel to the boundary, 
and another is propagating in the direction perpendicular to the boundary. Figure 1 shows the diagram of PML 
boundary and inner domain. 
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Figure 1 PML problem schedule           Figure 2 Input excitation information 

 
As a result of varies disadvantages of finite difference-time domain (FDTD) method and finite element method 
(FEM) algorithm, hybrid method draws more and more attention in recent years (Collino and Tsogka, 2001; Li,
et al. 2007). In this study, hybrid finite element method was adopted to evaluate the numerical errors. 
 
 
3. Comparison of PML and MTF 
 
The near-fault seismic wave was simulated using PML and MTF boundaries with pulse-like incidence. The 
Ricker time function was adopted to simulate the incidence, whose time history and frequency component are 
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shown in Figure 2. Figure 4 illustrates model of the body wave simulation. The elasto-dynamic characteristics
of the material are as follows: possion ratio ν is 0.25, compression wave velocity cp is 2000m/s and shear wave 
velocity cs is 1400m/s. The periphery of the square in Figure 4 uses MTF or PML. Considering the stability 
requirement, Δt is set as 0.02s. The reflectivity is related to the incidence angle, therefore the responses of 
corner point (B) and perpendicular incidence points (A and C) are used to illustrate the absorption capacities of 
the two boundaries. Figure 5 shows the surface wave simulation model. The material properties are the same as 
body wave simulation. The bilateral vertical sides and bottom boundaries of the square in Figure 5 use MTF or 
PML boundaries. Different points at different depth from the surface are chosen: point D at the surface, point E
at the point under surface 10Δy and point F under surface 40Δy, respectively. The arrows in Figure 4 and 5 
demonstrate the loading points and direction of Ricker function p(t). 
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Figure 3 geometry schedule of body wave simulation  Figure 4 geometry schedule of surface wave simulation
 
 
3.1 Comparison based on body wave motion simulation 
The velocity response time history at point A, B, and C are computed with two kinds of ABCs. The results are
shown in Figure 5(A)-(C), respectively. Some important conclusions can be drawn based on these figures. The 
absorption capacity of PML is superior to MTF when δ=10, R<10-2. By choosing different parameter R, PML 
performs a peak reflected value at the same time with different amplitude. This phenomenon can be rational 
explained as that the wave motions propagates at the PML outside boundary and yields reflection wave, which
travels back into the inner boundary. In order to figure out this phenomenon, the authors carried out amount of 
numerical examinations. If the depth of PML increases, the peak reflection value will be lagged. The PML 
results are almost similar to the analytical result when R<10-6. The PML domain always keeps stable if the inner 
domain algorithm is stable. Hereby PML possesses better stability performance than MTF. 
The absolute value of the errors between numerical and analytical solutions was chosen as the criteria in 
quantitative comparison. Numerical examinations found that the parameter R plays an important role than δ in 
these tests. For this reason, the following comparisons keep δ=10 and vary R from 10-1 to 10-8. The error values 
of the comparisons with different parameters are listed in Table 3.1. 
 

Table 3.1 Comparison of finite domain and analytical solution (body wave absorption) 
ABCs Vx at A Vx at B Vx at C Vy at A Vy at B Vy at C 

MTF 0.0062 0.0079 0.0042 2×10-4 9×10-4 0.0055 

PML 

R=10-1 0.0161 0.0233 0.0124 0.0019 0.0019 0.0127 

R=10-2 0.0069 0.0104 0.0049 6×10-4 6×10-4 0.0043 

R=10-4 0.0013 0.0021 9×10-4 1×10-4 1×10-4 5×10-4 

R=10-6 3×10-4 5×10-4 2×10-4 <1×10-4 <1×10-4 1×10-4 

R=10-8 1×10-4 1×10-4 1×10-4 <1×10-4 <1×10-4 1×10-4 
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As illustration in Table 3.1, the numerical error caused by MTF is similar to PML with δ=10, R=10-2. When the 
incidence is perpendicular to the boundary, the error of MTF is 9% and PML with δ=10, R=10-4 is 2%. And 
when the incidence angle equal to 45 degree, the error of MTF is 6.7% (include geometry damping effect) and 
PML with δ=10, R=10-4 is 1.8%. In the case of R<10-6, the error in the inner domain is less than 0.5%. 
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Figure 5 Response time history at points A to F 

 
 
3.2 Comparison based on surface wave motion simulation 
 
The surface wave simulation model is illustrated in Figure 4. The velocity response time histories at point D, E 
and F are computed. The results are shown in Figure 5(D)-5(F), respectively. The absorption capacity of PML is 
better than MTF when δ=10, R<10-2. PML shows a peak reflected value at the same time with different 
amplitudes as mentioned above. This phenomenon is caused by the incidence wave motion reflected from the 
PML outside boundary. The PML numerical results are almost similar to the analytical results when R<10-6. 
The stability of PML is better than MTF. 
The absolute value of the errors between numerical and analytical solutions was chosen as the criteria in the 
quantitative comparison. The comparisons keep δ=10 and vary R from 10-1 to 10-8. The errors of the
comparisons with different parameters are listed in Table 3.2. 
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Table 3.2 Comparison of finite domain and analytical solution (surface wave absorption) 
ABCs h=0* h=1 h=5 h=10 h=20 h=40 

MTF 0.0286 0.0262 0.0078 0.0104 0.0085 0.0047 

PML 

R=10-1 0.0231 0.0194 0.0090 0.0183 0.0175 0.0140 

R=10-2 0.0096 0.0082 0.0030 0.0045 0.0046 0.0054 

R=10-4 0.0018 0.0015 6×10-4 9×10-4 9×10-4 9×10-4 

R=10-6 3×10-4 3×10-4 2×10-4 2×10-4 2×10-4 2×10-4 

R=10-8 1×10-4 1×10-4 1×10-4 1×10-4 1×10-4 1×10-4 
*h is the distance from free surface (unit, Δy) 

 
As shown in Table 3.2, the errors caused by MTF are larger than PML, especially at the near surface boundary 
points. The errors at surface point (h=0) and the point below surface (h=1) are 4.8% and 4.6%. The numerical 
errors caused by MTF are larger than PML with δ=10, R=10-1, which numerical error is about 3.3%. As the 
increases the depth h, the reflection error fluctuates within a limit range (boldface number in Table 3.2). When 
the depth h is about 40Δy, body wave motion dominates the wave motion and the error obtained by MTF is 
about 6%, which is similar to body wave absorption issue. The absorption capacity of MTF is nearly the same 
as PML with δ=10, R=10-2, which is like the absorption capacity in the body wave simulation. 
 
 
3.3 The computational efficiency comparison 
 
The computational efficiency of PML is mainly focus on the computation of damping d(»). Since the algorithm 
of PML and inner element is the same, after substituting the function d(») into the stiffness matrix as a 
material constant, there is no additional computation in PML elements. So there is nearly no increase of 
computational cost. However, compared with MTF, PML needs to pave several layers of elements (normally 
5~20 element length) outside the bounded domain. The computational efficiency of PML will decrease as the
layer depth increases and the dimension of the problem increases from 2D to 3D. If the material nonlinearity 
was considered, the inner domain computations will dominant the efficiency cost. The PML computational cost 
is very small compared with inner domain cost, because the PML elements will maintain elastic no matter what 
material the inner domain is. In this study, the computational cost of PML is about 20% more than MTF. The 
additional costs can be accepted. 
 
 
Conclusions 
 
In this study, the theory and construction method of PML are presented. The PML is combined with 
velocity-stress hybrid finite element method, which is then used in the near-fault earthquake simulations. The 
numerical reflection of PML and MTF boundary are compared. The study leads to the following conclusions. 
(1) The numerical reflection of PML is caused by the outside boundary condition; the reflection of MTF is 
caused by the polynomial interpolation error and the assumption of arbitrary wave speed. 
(2) The absorption performance of PML is superior to MTF in the simulations. The absorption capacity of MTF 
is similar to PML with δ=10, R=10-2 for the body wave motion; and the capacity of MTF is similar to PML with
δ=10, R=10-1 for the surface wave motion. 
(3) The absorption capacity of PML can be optimized by tuning the parameter δ and R. 
(4) Neither unstable phenomenon nor zero-frequency drift phenomenon has been observed for PML. PML 
possesses better stability than MTF. The computational cost of PML has not obviously increased. 
The comparison procedures in this study also can be used in the estimation of numerical errors, applicability
investigation and computation evaluation, and so on. The results in this study are credible for the reason that the 
comparison procedures are the same and the criteria of numerical errors are unique for the two ABCs. However, 
some results may be not appropriate for other PDE system; the results should be further investigated. 
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