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ABSTRACT : 

A number of experiments indicate that the internal damping corresponding to the energy dissipation of many 
materials is essentially frequency independent. Accordingly, an analysis model that can express such 
characteristics (called a hysteretic damping model) in the time domain is needed. Although a great number of 
investigations into this subject have been carried out, there are few practical methods. In this paper, a simple 
and practical hysteretic damping model that can be applied to time history response analyses is proposed. First, 
a unit imaginary function that is a principle factor of the hysteretic damping model is considered, and a causal 
function approximating to this is selected. This function is transformed to the impulse response in the time 
domain. The proposed causal hysteretic damping model is made using 2h times the impulse response, where h 
is the damping ratio. Next, the Biot model is described and the characteristics of the impedance and the impulse 
response of the model are compared with those of the proposed model. Then, in order to confirm the 
applicability and the efficiency of the proposed model to time history response analyses, earthquake response 
analyses of example models are carried out. 
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1. INTRODUCTION 
 
It is well known that the hysteretic dissipation energy with regard to the internal damping of many materials is 
essentially frequency independent (e.g. Chopra(2000)). A damping model indicating such characteristics is 
called a hysteretic damping model (either a complex damping model or a structural damping model). 
In cases where not only the effects of the first natural mode of a structure, but also those of higher natural 
modes cannot be ignored in the response estimation of the structure, or in the case of the natural frequency of 
the structure varying due to the nonlinear behavior of the structure, the use of the aforementioned damping 
model is particularly required. 
In analyses carried out in a frequency domain, a hysteretic damping model that can be expressed using a 
complex spring with constant coefficient for  in both real and imaginary parts is often used. However, in order 
to take into account the effects of the nonlinear behavior during a severe earthquake, it is necessary to carry out 
tine history response analyses.  
As damping models in the time history analysis, the Kelvin-Voigt model, the Rayleigh model and the strain 
energy proportioned model (Dobry et all. 1971) are often applied. The Kelvin-Voigt model is simple and widely 
used, but the damping ratio is proportional to frequency. The damping ratio of the Rayleigh model is frequency 
independent to some degree, but it becomes large in the lower and the higher frequency range. The damping 
ratio of the strain energy proportioned model is almost frequency independent in the wide frequency range. 
However, this model is not widely used because the calculation is not simple, e.g. an eigenvalue analysis up to 
high order is essential and the damping matrix becomes a full matrix. So there are problems in accuracy and 
applicability in these methods. 
It is well known that a precise transform of the hysteretic damping model to the time domain is impossible due 
to the fact that it is noncausal and does not satisfy the Kramers-Kroning relation (e.g. Inaudi and Kelly, 1995). 
A number of studies on a hysteretic damping model that satisfies the causality have been carried out.  
For example, Inaudi and Kelly (1995) presented a precise hysteretic damping model in the tine domain based 
on the Hilbert transform and proposed a method for applying it to time history analyses by conducting 
convergent calculations. Makris (1997) proposed a causal model that can be placed at the limit of Biot’s visco- 
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elastic model (Biot, 1958) and showed that this model is closer to the ideal hysteretic damping than the Biot 
model. Afterwards, Makris and Zhang (2000) compared the model with the Biot model minutely and showed 
that the Biot model is more practical and reliable than the model for actual time-domain analyses. They also 
approximated the Biot model simply by the Prony series and showed the efficiency of the model by applying it 
to the response analyses of a soil structure. Therefore, the Biot model has been regarded as one of the models 
which most closely approximate the hysteretic damping among causal models. However, the model has not 
been widely used yet in practical time history analyses and more effective damping models are needed. 
The author proposed some methods for the transform of the frequency dependent complex stiffness to the time 
domain (Nakamura, 2006a, 2006b). The frequency independent hysteretic damping can be considered to be the 
damping in a special case for the frequency dependent complex stiffness.  
In this paper, a simple and practical hysteretic damping model that can be applied to time history response 
analyses is proposed on the basis of the previous study. 
First, the concept of the proposed damping model is explained and the characteristics of the model both in the 
time domain and in the frequency domain are investigated.  
Next, the Biot model formulated base on Makris and Zhang (2000) is described and the characteristics of the 
impedance and the impulse response of the model are compared with those of the proposed model. 
Moreover, with a view to estimating the applicability and the efficiency of the proposed model to time history 
response analyses in comparison with the energy proportional damping model and the Biot model, earthquake 
response analyses of both a 4 node model and a layered soil model are carried out. 
 
 
2. MODELING METHOD 

 
2.1 Concept of Proposed Model 
The complex stiffness including the hysteretic damping is given by Eq. 2.1. Where K0: Stiffness, h: Damping 
ratio, i: Imaginary unit. 

(2.1)  
 

Using Z() in Eq.2.2, Eq. 2.1 is replaced by Eq. 2.4. 
 

(2.2)  
 
Where                                                                          (2.3) 

 
(2.4)  

 
It is impossible to transform Z() (hereafter referred to as unit imaginary function) accurately to the time 
domain. Therefore, in this paper Eq. 2.5 is formulated using the causalized unit imaginary function Z’() 
(hereafter referred to as causal unit imaginary function) in order to transform it to the time domain by relaxing 
the conditions as indicated below. 

 
(2.5)  

 
1) Consideration of focused frequency range 

In many earthquake response analyses of structures, the frequency subjected to investigations is 10Hz or less. 
The frequency for rigid structures such as nuclear power plant facilities is 20Hz or less. A frequency of over 
20Hz hardly contributes to the structural response in most cases. 
Therefore, it is thought that Eq. 2.3 is to be formed only in a certain fixed frequency range (- m< < m 
hereafter referred to as focused frequency range). It is also important that the value Z () on the outside of the 
range must not exert a negative influence upon the response value, as described later. 
 
 

))sgn(21()( 0   ihKS

))(21()( 0  ZhKS 

)0(1),0(0),0(1)(,0)(   IR ZZ

iZZZ IR  )()()( 

))('21()(' 0  ZhKS 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
2) Reevaluation of real part 

In order that the complex stiffness is causal, both the real part and the imaginary part need to satisfy the 
Kramers-Kroning relation. In this paper, the real part is to be reevaluated from the Hilbert transform of the 
imaginary part. Consequently, the real part (ZR ()) becomes the frequency dependent value (hereafter 
referred to as Z’R ()) from 0. 
 

2.2 Modeling of Imaginary Part 
The imaginary part of the proposed model (hereafter referred to as Z’I ()) is shown as the sum of the regular 
component Z’Ir () and the singular component Z’Is () in Eqs 2.6, 2.7 and Figure 1. 
The figure shows the values in the range of 0 with the skew-symmetry in the range of <0. The regular 
component Z’Ir () is set as a function repeating at every m. In the outside of the focused frequency range, the 
regular component is a function that increases by steps along with the singular component as shown in Figure  
2. Namely, with a rise in , the total imaginary part increases and becomes rigid at  . Therefore, it is 
thought that the effect of the matter outside of the focused frequency range upon the response is slight. 
 

(2.6)  
 

(2.7)  
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2.3 Calculation of Real Part 
The causal real part Z’ R () is calculated from the regular component Z’Ir () using the Hilbert transform in 
Eq.2.8. The value for Z’ R () is obtained numerically as Cauchy's principal values of integral by setting the  
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 (a) Total imaginary part Z’i()   (b) Regular components Z’Ir()   (c) Singular components Z’Is() 
Figure 1 Modeling of imaginary part: 
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focused frequency range at 0~20Hz (m = 40). Figure 3 shows the computed real part Z’R () together with the 
imaginary part Z’I(). 
The calculated function Z’R () is smooth and symmetric about the center of the focused frequency range (10Hz 
in this case). Although the numerical integral is stable in general, the calculated function has logarithmic 
singularities in areas close to points of discontinuity (0Hz and 20Hz), so it is difficult to calculate the integral 
accurately in these areas. 
However, it does not matter if the accuracy in these areas is low because the values in the areas are not used in 
the transform to the time domain in the next step. The circle marks in Figure 3 show the data points used in the 
transform. It is found that all of them are in the stable area. 

 
(2.8)  

 
 

2.4 Calculation of Impulse Response 
The author proposed some methods for the transform of the frequency dependent complex stiffness to the time 
domain (Nakamura, 2006a, 2006b). In the following, the transform of the causal unit imaginary function Z’ () 
obtained in the previous chapter to the time domain is carried out. Method B is utilized for the transform. If 
method C is used, the obtained impulse responses are all the same since the complex function is causal and 
nothing is modified.  
The transform is conducted for the three models shown in Table 1. The name of each model implies the number 
of the time delay components. It can be thought that the larger the number, the higher the accuracy in the 
transform to the time domain. 
 

Table 1. Transform data 
Model 
Name 

Number of Complex 
Data (N) 

Frequency of Complex Data 
(Hz) 

Time Step 
(sec) 

Number of Time-delay 
Components (N-1) 

3 terms  4 4., 8., 12., 16. 0.05 3 
8 terms  9 2., 4., 6., 8., … 18. 0.05 8 
18 terms 19 1., 2., 3., 4., … 19. 0.05 18 

 
 
 
 
 
 
 
 
 
 
 
 
              
 
 
 
Figure 4 illustrates the impulse response obtained from the transform. The simultaneous components k0 and m0 
are almost 0 except k0 of the 3 term model. The reason is considered as the followings. 
The real part of Z’ () is calculated by the Hilbert transform. Since the simultaneous components are not 
obtained from the Hilbert transform, the simultaneous components k0 and m0 , whish are related to the real part 
only, become 0. It is thought that the reason why k0 of the 3 term model only is substantial is because the 
transform accuracy of this model is lowest.  
As for the time delay components of the stiffness terms, the first term (k1) is about -0.6 in any case. With an  
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Figure 4. Calculated impulse response 
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increase in t, the impulse response value gradually increases toward 0. There is a tendency in which the smaller 
the number of terms for the time delay component, the more quickly the impulse response value approaches 0. 
With regard to the damping term, the same tendency is shown in all cases with the simultaneous component 
only. As for Z’ (), the real part shows the symmetry at the center (10Hz) of the focused frequency range 
(0~20Hz) and the regular component of the imaginary part is skew-symmetric, so the time delay components 
c1~cN-1 of the damping term must be 0 and tm = 2n where n =1,2,… In this case, t is set at 0.05sec as shown 
in table 2, so tm becomes 2 
From the above, the actual components of the impulse response of the causal unit imaginary function are the 
time delay component of the stiffness term (kj  where j=1,2,..) and the simultaneous component of the damping 
term (c0). Then, Z’ () and the corresponding reaction z’ (t) can be indicated in Eqs. 2.9 and 2.10. 
Figure 5 illustrates the complex stiffness recovered from all components of the impulse response by Eq. 2.9 together 
with the data points used for the transform (in the case of the model with 18 terms) of the causal unit imaginary 
function Z’ (). Almost the same characteristics can be seen in all cases and correspond quite well to Z’ (). The 
difference between each case occurs at the ends of the focused frequency range (near 0Hz and 20Hz in the figure). 
The proposed model can also be formulated using non-dimensional frequency and an upper limit of the focused 
frequency range can be arbitrarily varied.  

 
(2.9)  

 
 

(2.10)  
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3. THE BIOT MODEL 
 
As mentioned above, the Biot model has been regarded as one of the models which most closely approximate 
the hysteretic damping among causal models. A number of studies on the application of this model to time 
history response analyses have been carried out. In this paper, the characteristics of the proposed model are 
compared with those of the Biot model which is approximated using the Prony series by Makris and Zhang 
(2000). 
Complex stiffness of the Biot model Sb() is shown by Eq. 3.1 in the form corresponding to Eq. 2.4. K0 and h 
indicate the static stiffness and damping ratio respectively.  in Eq. 3.2 is an arbitrary real constant. 
 

(3.1)  
 
 Where 
 

(3.2)  
 

))(21()( 0  bb ZhKS 



























 








 1

2

tan1ln2)( iZb

jti
N

j
j ekciZ  





 
1

1
0)(







1

1
0 )()()(

N

j
jj ttuktuctz 

-2

-1

0

1

2

3

0 1 2 3 4

3 terms
8 terms

18 terms
Data points

Frequency (Hz)

Real

Imag.

(a) Figure in 0~20Hz                       (b) Figure in 0~4Hz 
Figure 5 Recovered complex stiffness 
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Zb() for the Biot model is considered as a function corresponding to the unit imaginary function shown in the 
previous chapter. In the following studies, the Biot model with  =1.0 which relatively corresponds to the 
proposed model will be used. Eq. 3.1 in the time domain is led from Eq. 3.3. zb(t) indicates a reaction in the 
time domain corresponding to Zb() and it can be explained by Eq. 3.4 using the impulse response damping 
term cb(t). 

(3.3)  
 
Where 

(3.4)  
 
The solution of cb(t) can be given by Eq.3.5.  indicates the Euler constant (0.5772). 
 

 
(3.5)  

 
 

cb(t) in Eq. 3.5 was approximated by cbp(t) in Eq. 3.6 using the Prony series. The coefficients a i and bi are the 
coefficients for Prony series. They correspond to the coefficient gi and i of N=4 in Makris and Zhang (2000), 
where a i = gi / 0.36 and bi =i 

 
(3.6)  

 
 

 

 

 

 

 

  

 
 
 
In Figure 6, S’() of Eq. 2.5 calculated by the proposed model (8 terms) is compared with Sb() of Eq. 3.1 
calculated by the Biot model (t =0.01sec). The damping ratio h is set at 10%. 
In the real part shown in Figure 6(a), the value of the proposed model is located between 0.73 and 1.09 
corresponding to the target value 1.0. The value of the Biot model increases from 1.0 at 0Hz to 1.5 at 10Hz.  
Using the constant (1.352), which makes the real part 0 at 0 Hz of the proposed model, the real part of the Biot 
model is modified for comparison by reducing a constant (0.2704 = 1.352 x 2h). The modified real part 
generally corresponds to that of the proposed model in the range from 0 Hz to 5Hz. 
As for the imaginary part shown in Figure 6(b), the proposed model and the Biot model agree well to each 
other in the area of 0.6Hz or less. However, in the area greater than 0.6Hz, the Biot model differs from the 
target due to the fluttering while the proposed model almost agrees with the target except the vicinity of 10Hz. 
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(a) Real parts / K0,             (b) Imaginary parts / K0 
Figure 6 Comparison of complex stiffness (h=10%) between the Biot model 

(t=0.01) and the proposed model (8 terms) 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
4. TIME HISTORY RESPONSE ANALYSIS 
 
A time history earthquake response analysis is carried out using the proposed causal hysteretic damping model 
in order to confirm its validity and effectiveness. 
 
4.1 Equation of Motion 
In the frequency domain, the equation of motion for earthquake response analyses with hysteretic damping can 
be written as Eq.4.1. [MS] and [KS] in this equation indicate the mass and stiffness matrix of a structure. 
{u()},y0() and h are the structural displacement vector, input ground motion and damping ratio respectively. 
When applying Z’() in place of the imaginary unit i, the equation of motion in the time domain can be 
expressed as Eq. 4.2 using z’(t) in Eq.2.10. 
 

(4.1)  
 

(4.2)  
 
In cases where the damping ratio is not uniform in an entire structure, the element force {FK (t)}E of Eq. 4.3 of 
each element can be calculated and superposed for all elements. The subscript E in Eq. 4.3 indicates the amount 
for the element. 

 
(4.3)  

 
 
4.2 Time History Analysis of Layered Soil Model 
In order to compare the proposed model with the Biot model, an earthquake response analysis of a layered soil 
model is performed.  
The analysis model is shown in Figure 7. This analysis model has two layers on rigid rock. The shear wave 
velocity Vs of the upper layer is set at 100m/s and that of the lower layer is set at 200m/s. The damping ratio of 
the upper layer is set at 10% and that of the lower layer is 5%. A soil column model with a unit sectional area is 
used as an analysis model which is a one-dimensional 15 lumped mass system model with shear springs. 
The analysis is carried out for the proposed model (8 term model, focused frequency range 0-10Hz) and the 
Biot model ( =1.0, t=0.01sec) approximated using the Prony series. The analysis results are compared with 
the results of the frequency response analysis using the complex damping model. The input ground motion and 
conditions for the time history analysis and frequency analysis are the same as those for the 4 nodal model. The 
primary and the second eigenfrequencies of the model by the real eigenvalue analysis are 1.96Hz and 4.98Hz, 
respectively. 
Figure 8 compares the time history waves (absolute acceleration, relative velocity and relative displacement) of 
the top node of the proposed model and the Biot model in the time range being 0~6 sec with the results 
obtained from the frequency response analysis. For each wave, the maximum value and the ratio to that of the 
frequency response analysis in the parenthesis are also described in the figure for comparison. 
The time history waves for the proposed model almost agree to the results of the frequency response analysis as 
shown in Figure 8(a). However, with regard to the Biot model, a large difference is discernible in the phase 
between the time history wave and the frequency analysis result as shown in Figure 8(b). 
It can be thought that this is so because the real value of the Biot model is about 1.3 times the target value (1.0) at the 
first eigen frequency (1.96Hz) of the model as shown in Figure 6 so the first eigen period of the Biot model becomes 
10~15% shorter than that of the frequency analysis corresponding to the square root of 1.3.  
Therefore, it can be said that the proposed model is more efficient than the Biot model because of the higher 
accuracy and the almost equal computational burden. 
 
 
5. CONCLUSIONS 
 
In this paper, an approximate causal hysteretic damping model was proposed. The model was made up using the 
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approximately causalized impulse response of the unit imaginary function that is a principle component of the 
ideal hysteretic damping. The impulse response was obtained by employing the method for transforming the 
complex stiffness to the time domain  
First, the fundamental characteristics of this proposed model were studied. Then, the Biot model approximated 
using the Prony series was shown and the characteristics of the model were compared with those of the 
proposed model.  
Moreover, earthquake response analyses of a layered soil model were carried out in order to compare the 
behavior of the proposed model with the Biot model. As a result, the applicability and the efficiency of the 
proposed model to time history response analyses corresponding to the Biot model were confirmed. 
The details of this method are shown in Nakamura (2007). 
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Figure 8 Comparison of time history waves of top node 
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