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ABSTRACT : In this paper a new enhanced Nonlinear Static Procedure (NSP) is presented and evaluated. The 
steps of the proposed methodology are quite similar to those of the well-known Coefficient Method (FEMA 
356/440). However, the determination of the characteristics of the equivalent single degree of freedom
(E-SDOF) system is based on a different philosophy. Specifically, the E-SDOF system is determined by 
equating the external work of the lateral loads acting on the MDOF system under consideration to the strain
energy of the E-SDOF system. After a brief outline of the method, a series of applications to planar regular 
frames is presented. Considering the results obtained by nonlinear time-history analysis as the reference 
solution, a comparison between the proposed and the conventional NSPs is conducted, which shows that the
proposed method gives, in general, much better results.  
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1. INTRODUCTION  
 

The objective of this paper is the presentation and evaluation of a new enhanced Nonlinear Static Procedure 
(NSP) for the approximate estimation of the seismic response of structures. The steps of the proposed
methodology are quite similar to those of the well-known Coefficient Method (FEMA 356/440). However, the 
determination of the characteristics of the equivalent single degree of freedom (E-SDOF) system is based on a
different philosophy. Specifically, the definition of the E-SDOF system is based on the equalization of the 
external work of the lateral loads acting on the multi degree of freedom (MDOF) system under consideration to 
the strain energy of the E-SDOF system. 
 

Firstly, the theoretical background and the assumptions of the proposed methodology are presented and briefly
discussed. Taking into account the basic assumptions and applying well-known principles of structural 
dynamics, some fundamental conclusions are derived and, on their basis, an alternative, energy-equivalent 
SDOF system is established, which can be used for a more realistic estimation of the target displacement as well 
as of any other response quantities of interest such as storey drifts, internal forces, etc.  
  
Secondly, both steps needed for the implementation of the proposed methodology along with the necessary 
equations are systematically presented. 
 
Finally, the accuracy of the proposed methodology is evaluated by an extensive parametric study. In particular,
the methodology is applied to a series of 3-, 6-, 9- and 12-storey R/C planar regular frames. For each frame two 
sets of pushover analyses are conducted: i) one based on the proposed methodology and ii) a second based on
the conventional FEMA 356/440 procedure. Each set of analyses comprises 12 different response spectra
corresponding to real strong earthquake motions. The storey displacements are compared with those obtained by
nonlinear time-history analysis, which is considered as the reference solution. The paper closes with comments 
on results and conclusions.  
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2. ELASTIC RESPONSE OF MDOF SYSTEM 
 
 

2.1. Response of SDOF Systems 
  

It is well known that the response of a MDOF system with N degrees of freedom to earthquake ground 
motion üg(t) is governed by the following equations (Anastasiadis 2004, Chopra 2007): 
 

 Μu&&  + C u&  + Ku = -Mδ u&& g(t)                            (2.1) 
 

where u is the vector of N displacements (translations or rotations) of the N degrees of freedom relative to the
ground, Μ is the NxN diagonal mass matrix, C and K are the NxN symmetric damping and stiffness matrices 
respectively and δ is the influence vector that describes the influence of support displacements on the
structural displacements. The vector u and the vector of modal forces (or moments) Fs = Ku can be 
decomposed to their modal components as follows: 
 

u = ∑
=

N

1i

iu = ∑
=

N

1i
iqiφ                               (2.2) 
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where φi is the modal vector, qi is the modal co-ordinate and ωi

2 is the natural frequency of vibration mode i.
The quantity:  
 

Vi = δTFsi = ωi
2qiδTΜφi = ωi

2qiLi                            (2.4) 
 

where Li = δTΜφi, represents the sum of the modal loads corresponding to non zero terms of vector δ, i.e., in 
the usual case of horizontal excitation Vi is equal to the modal base shear parallel to the direction of excitation.
By substituting Eqns. 2.2 and 2.3 into Eqn. 2.1, premultiplying both sides of Eqn. 2.1 by φi

T and using the 
orthogonality property of modes, N uncoupled equations can be derived: 
 

Μi iq&& + 2Μiωiζi iq& + Μiωi
2

iq = - Li u&& g(t) ⇔ iq&& + 2ωiζi iq& + ωi
2

iq = - νi u&& g(t)         (2.5) 
 

where Μi, ζi and νi are the generalized mass, the damping ratio and the modal participation factor of vibration 
mode i respectively. Substituting qi = νiDi into Eqns. 2.4 and 2.5 and multiplying both sides of Eqn. 2.5 by Li
gives: 
 

Vi = ωi
2 νi Di Li = ωi

2 Μi
*Di                            (2.6) 

 

Μi
*

iD&& + 2Μi
*ωiζi iD& + ωi

2 Μi
*

iD = Μi
*

iD&& + 2Μi
*ωiζi iD& + Vi  = - Μi

* u&& g(t)      (2.7) 
 

where Μi
*= νi Li is the active mass of vibration mode i. Eqn. 2.7 demonstrates that the linear elastic response of 

a MDOF system with N degrees of freedom subjected to an horizontal earthquake ground motion üg(t) can be 
expressed as the sum of the responses of N SDOF systems, each one corresponding to a different vibration 
mode having mass equal to the effective modal mass and elastic resisting force equal to the modal base shear 
relevant to this mode.  
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2.2. External Work of Modal Forces Fsi 
 
A MDOF system with N degrees of freedom which is subjected in the differential time interval dt to an 

excitation üg(t) performs the differential displacements du = ∑
=

N

1i
d iu  = ∑

=

N

1i
idqiφ  = ∑

=

N

1i
iidDviφ . The external 

work of modal forces Fsi of mode i on the displacements dui can be written as:  
 

dΕi = ji

N

1j
 ji Fdu∑

=

                                (2.8) 

 
where duji and Fji are the j-elements of vectors dui and Fsi respectively. Eqn. 2.8 can be formulated in matrix 
form as follows:  
 

dΕi = dui
Τ Fsi ⇒  dΕi = φi

Τ νi dDi  ωi
2 νi Di Μφi ⇒  dΕi = ωi

2 νi νi (φi
ΤΜφi) Di dDi ⇒  

 

dΕi = ωi
2 νi 

i

i

M
L  Μi Di dDi ⇒  dΕi = ωi

2 Μi
* Di dDi ⇒  dΕi = Vi dDi       (2.9) 

 
Eqn. 2.9 shows that the external work of modal forces Fsi on the displacements dui = νi φi dDi is equal to the 
work of the resisting force (or the strain energy) of the E-SDOF system on the displacement dDi. 
 
 
3. INELASTIC RESPONSE OF MDOF SYSTEM 
 
 

3.1. Response of SDOF Systems 
  

In the inelastic range of behavior some basic assumptions have to be made. A major assumption is that the 
response of a MDOF system can be expressed as superposition of the responses of appropriate SDOF 
systems just like in the linear range. Each SDOF system corresponds to a vibration “mode” i with “modal”
vector φi. The displacements ui and the inelastic resisting forces Fsi are supposed to be proportional to φi and
Mφi respectively. Furthermore, “modal” vectors φi are supposed to be constant, despite of the successive
development of plastic hinges. The response of the MDOF system is governed by the following equations 
(Anastasiadis 2004, Chopra 2007): 
 

 Μu&&  + C u& + Fs = -Mδ u&& g(t)                            (3.1) 
 

The only difference between Eqns. 2.1 and 3.1 is that the resisting forces (or moments) Fs can’t be expressed 
as linear functions of the displacements u, because the terms of stiffness matrix K do not remain constant during 
the loading process. However, due to the aforementioned assumptions, they can be expressed as the sum of 
“modal” contributions as follows: 
 

Fs = ∑
=

N

1i

siF = iΜφ∑
=

N

1i

iα                        (3.2) 

 
where αi is an hysteretic function that depends on the “modal” co-ordinate qi and the history of excitation. The 
quantity:  
 

Vi = δTFsi = αi Li                               (3.3) 
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represents, just like in the linear range, the sum of “modal” loads corresponding to non zero terms of vector δ, 
i.e., in the usual case of horizontal excitation Vi is equal to the “modal” base shear parallel to the direction of 
excitation. By substituting Eqns. 2.2 and 3.2 into Eqn. 3.1, premultiplying both sides of Eqn. 3.1 by φi

T and
using the orthogonality property of “modes”, N uncoupled equations can be derived: 
 

iq&& + 2ωiζi iq& + αi = - νi u&& g(t)                                   (3.4) 
 

Substituting qi = νiDi into Eqn. 3.4 and multiplying both sides by Li gives: 
 

Liνi iD&& + Li2ωiζiνi iD& + Liαi = -Liνi u&& g(t) ⇔Μi
*

iD&& + 2Μi
*ωiζi iD& + Vi  = - Μi

* u&& g(t)      (3.5) 
 

Eqn. 3.5 shows that, due to the aforementioned assumptions, the nonlinear response of a MDOF system with 
N degrees of freedom subjected to an horizontal earthquake ground motion üg(t) can be expressed as the sum of 
the responses of N SDOF systems, each one corresponding to a vibration “mode” having mass equal to the 
effective “modal” mass and inelastic resisting force equal to the “modal” base shear relevant to this “mode”.  

 

3.2. External Work of “Modal” Forces Fsi 
 
A MDOF system with N degrees of freedom which is subjected in the differential time interval dt to an 

excitation üg(t) performs the differential displacements du = ∑
=

N

1i

d iu  = ∑
=

N

1i

idqiφ  = ∑
=

N

1i
iidDviφ . The external 

work of “modal” forces Fsi of “mode” i on the displacements dui can be written as:  
 

dΕi = ji

N

1j
 ji Fdu∑

=

                                (3.6) 

 
where duji and Fji are the j-elements of vectors dui and Fsi respectively. Eqn. 3.6 can be written in matrix form as 
follows:  
 

dΕi = dui
Τ Fsi ⇒  dΕi = φi

Τνi dDi  αi Μφi ⇒  dΕi = αi νi dDi (φi
ΤΜφi) ⇒  

 

dΕi = αi 
i

i

M
L  dDi Μi ⇒  dΕi = αi Li dDi ⇒  dΕi = Vi dDi            (3.7) 

 
Eqn. 3.7 shows that the external work of “modal” forces Fsi for the displacements dui = νi φi dDi is equal to the 
work of the resisting force (or the strain energy) of the SDOF system for the displacement dDi. 
 
 
4. CHARACTERISTICS OF INELASTIC SDOF SYSTEMS 
 
An inelastic SDOF system is usually described by a bilinear force – displacement diagram V – D (figure 1), 
from which the most important characteristics can be derived. For the implementation of NSPs the
characteristics of interest are the natural period T and the yield strength reduction factor R (Eqn. 4.1), 
 
   

T = 2π 
y

y

V
mD

 →  Sa →  R = 
y

a

V
mS

                      (4.1) 

 
where Sa is the spectral acceleration. Also, the behavior of an inelastic SDOF can be described by a strain 
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energy - displacement diagram E – D (figure 1) and the characteristics of interest can be derived from Eqns. 4.2
and 4.3 (where Sd is the spectral displacement). The E – D diagram is a 2nd degree parabolic curve in the linear 
range (Ε = ½k D2), while in the nonlinear range is a superposition of a parabola and a line [Ε = Εel + ½αk
(D-Dy)2 + Vy (D-Dy)]. In the special case of elastic – perfectly plastic system (α = 0) the curve degenerates to a 
line with slope Vy (discontinuous line in figure 1). The two alternative ways of describing the behavior of an 
inelastic SDOF are absolutely equivalent. 
 

Εel = 
2
1

VyDy = 
2
1

k Dy
2                            (4.2) 

 

T = 2π 
2Eel

2mDy
 →  Sa →  Sd →  R = 

Dy
Sd

                   (4.3) 

 

  
Figure 1 Force – displacement V – D and strain energy – displacement E – D curves 

 
 
5. THE PROPOSED METHODOLOGY 
 
The steps needed for the implementation of the proposed methodology are as follows: 
 
Step 1: Create the structural model, which is, in general, a spatial frame model.   
 
Step 2: Apply to the model a set of horizontal incremental forces (or/and moments) with distribution along the 
height proportional to the vector Mφi of elastic vibration mode i and determine the strain energy – displacement 
curve Ei – uNi. The displacement uNi can be chosen to correspond to any degree of freedom, but usually the roof
displacement parallel to the excitation direction is used. The strain energy Ei is equal to the work of the external
forces, including forces that are perpendicular to the excitation direction and also moments around the vertical
axis. In the linear range the Ei – uNi diagram is a parabolic curve and if the φi vector is normalized to uNi (i.e. φNi
= 1), the strain energy is given by Eqn. 5.1: 
 
  

Εel,i = 
2
1

 ui
T Κui

 = 
2
1

 uNi φi
T Κ φi uNi = 

2
1

ki uNi
 2                   (5.1) 

                                                             
where ki is the generalized stiffness of mode i. In the inelastic range the Ei – uNi diagram is gradually created by
superposition of lines and parabolic curves with discontinuities of curvature at the points of creation of plastic
hinges. 
 
Step 3: Divide the abscissas of the Ei – uNi diagram by the quantity νi φNi = uNi/Di and determine the Ei – Di
diagram of the SDOF system (figure 2). By utilizing a graphic procedure, the Ei – Di diagram can be idealized 
to a smoothed diagram without curvature discontinuities (like the E – D diagram of figure 1) and the 
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characteristics of the E-SDOF system can be derived directly from Eqns. 4.2 and 4.3. However, because of the 
complexity of the Ei – Di diagram this approach is difficult to apply, so follow the procedure of step 4. 
 

Vι,1

Vι

Κι,1

Κι,2

Κι,λVι,2

Vι,λ

DιDi,λDi,2Di,1

Ε i,1

Ε i

Di,λDi,1 D ιDi,2

dΕι,λ

Ει,λ

Ε i,2

Ε i,λ

 
Figure 2 Force – displacement Vi – Di and strain energy – displacement Ei – Di curves 

 
Step 4: Calculate the work Ei.λ of the external forces (or/and moments) in each of λ discrete intervals between 
the successive creation of plastic hinges. dEi.λ, as part of Ei.λ (Eqn. 5.2), is considered to derive from Eqn. 5.3. 
 

dΕi,λ = Εi,λ – Vi,λ-1 (Di,λ – Di,λ-1) = Εi,λ – Vi,λ-1 dDi,λ                   (5.2) 
 

dΕi,λ = 
2
1

ki,λ dDi,λ
 2 ⇒  ki,λ = 2 dΕi,λ / dDi,λ

 2                     (5.3) 

 
where ki,λ is the stiffness of the E-SDOF corresponding to mode i during the interval λ. The resisting force Vi,λ is 
given by Eqn. 5.4: 
 

 Vi,λ = Vi,λ-1 + ki,λ dDi,λ                              (5.4) 

For λ = 1 (i.e., when the first plastic hinge is created) the force Vi,1 is equal to the base shear parallel to the 
direction of excitation. By utilizing Eqns. 5.2 – 5.4 for each interval, determine the force – displacement 
diagram  Vi – Di of mode i (figure 2). 
 
Step 5: Idealize Vi – Di to a bilinear curve using one of the well known graphic procedures (e.g. FEMA 356,
3.3.3.2.4) and calculate the period T of the E-SDOF system corresponding to mode i from Eqn. 4.1. It is stated 
that the mass m is equal to the effective mass Μi

* of mode i (Eqn. 3.5). 
 
Step 6: Calculate the target displacement and other response quantities of interest (drifts, plastic rotations, etc.)
of mode i, using one of the well known procedures (e.g. FEMA 356, 3.3.3.3.2 / FEMA 440, 10.4). 
 
Step 7: Repeat steps 2 to 6 for an adequate number of modes. Obviously, this is not necessary, because the
proposed method could be applied reductively for the fundamental mode only. 
 
Step 8: Calculate the extreme values of the response quantities, using one of the well established formulas of 
modal superposition (SRSS or CQC). 
 
It is worth noticing that the proposed methodology can be applied without restrictions to 2D and 3D structures
as well as to regular and irregular buildings. Also, it is apparent that it can be easily implemented in existing 
software. Finally, this approach is consistent with advanced NSPs, e.g. multi-modal pushover analysis (Chopra
et al. 2001), adaptive pushover analysis (e.g., Pinho et al. 2005), etc. 
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6. APPLICATIONS 
 
In order to evaluate the accuracy of the proposed method an extensive parametric study is carried out. In 
particular, the methodology is applied to a series of 3-, 6-, 9- and 12-storey R/C planar regular frames designed 
according to the Greek codes. For each frame two sets of pushover analyses are performed: i) one based on the 
proposed methodology (PM) using the fundamental mode only and ii) a second based on the conventional 
FEMA 356/440 procedure (CPA). Each set of analyses comprises 12 different response spectra corresponding to
real strong earthquake motions recorded in Greece.  
 
The modification factor C1 that correlates the expected maximum inelastic target displacement to the 
displacement calculated for linear elastic response is obtained by nonlinear dynamic analysis of the E-SDOF 
system for each excitation. This is considered necessary because the relevant equations given by codes are based 
on statistical processing of data with excessive deviation and, therefore, in case of application of NSPs using 
response spectra of real ground motion (as in this paper) great inaccuracies could result (Manoukas et al. 2006).
 
The storey displacements of the frames under consideration are compared with those obtained by nonlinear 
time-history analysis, which is considered as the reference solution. In figure 3 the mean errors for the 12
excitations (in relevance to the nonlinear dynamic analysis results) of storey displacements are shown. For each 
frame two curves are plotted: i) according to the proposed methodology (PM) and ii) according to the 
conventional FEMA 356/440 procedure (CPA). Notice that the positive sign (+) means that the displacements 
obtained by NSPs are greater than those obtained by nonlinear time-history analysis. In reverse, the negative 
sign (-) means that the storey displacements are underestimated by NSPs. 
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Figure 3 Mean errors (%) of storey displacements for the proposed (PM) and the conventional (CPA) NSPs 
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7. CONCLUSIONS 
 
From figure 3 becomes clear that the two compared procedures give similar displacement profiles. However, the 
mean errors resulting from the proposed method are sufficiently smaller, except in case of the 6-storey frame. 
Specifically, in refer to the roof displacement, the use of the proposed method instead of the conventional
pushover analysis leads to a reduction of the mean error from 25% to 12% for the 3-storey frame, from 19% to 
15% for the 9-storey frame and from 5% to 3% for the 12-storey frame. In reverse, the mean error of the roof 
displacement of the 6-storey frame increases from 38% to 39%. Conclusively, the whole investigation shows 
that, in general, the proposed methodology gives much better results compared to those produced by the
conventional procedure. 
 
Similar results have been obtained from application of the proposed method to irregular planar frames
(Manoukas et al. 2008). However, the generalization of such conclusions is risky. In order to obtain secure 
generalized conclusions excessive investigations would be necessary comprising application of the proposed 
method to a large variety of structures using an adequate number of earthquake ground motions. It is also clear 
that the achievement of a satisfactory accuracy in one response quantity (storey displacements in this paper) 
does not ensure analogous accuracy in other quantities of interest, e.g. drifts (Manoukas et al. 2006).    
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