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ABSTRACT: 
 
When structures possess multiple fold eigenvalues, the orthogonality among different modes no longer exists in 
most cases. Therefore, in this paper, transfer function method independent of orthogonal relation is adopted to 
analyze the dynamic response based on theory of linear algebra and complex variable function, the dynamic 
response analysis method in time domain is derived, which is suitable for both non-classically and classically 
damped linear system with multiple fold eigenvalues. In addition, the structural response spectrum is introduced 
successfully and the CCQC algorithm is deduced, which can consider the effect of multi-fold-eigenvalues. The 
applicability of the deduced formula is verified through Newmark integration computation of liner structure 
subjected to prescribed earthquake motion. Meanwhile, the results show that, for the structure with multiple fold 
eigenvalues, the calculation errors will be fairly large if simply neglecting the effect of multiple fold eigenvalues. 
Finally, it is pointed out that the method derived in this paper is suitable for computing seismic responses of 
MDOF classical or non-classical damping linear system with or without multiple eigenvalues.  
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1. INTRODUCTION 
 
Mode superposition analysis method is widely used in seismic design of structures to simplify the dynamic 
analyses through decoupling the vibration equation based on orthogonal property and in result the concerned 
complex MDOF system can be turned into linear superposition of independent dynamic responses of a series of 
SDOF systems subjected to identical ground motion. Based on stationary random process theory and 
comparative analyses of time history, the square root of the sum of squares (SRSS) and complete quadratic 
combination (CQC) methods for classical damping linear system have proved to be an effective means for 
prediction of maximum response of structures subjected to earthquake excitation (Caughey, 1960). Recently the 
dynamic analysis of non-classically damped linear systems has been paid more attention because it is noticed 
that there are many structures whose damping are non-uniform, for instance, soil-structure interacting system 
and structures equipped with supplemental linear viscous dampers such as oil dampers. For the non-classical 
damping system, the traditional modal decomposed methods can not make the motion equation decoupled; so, 
many researchers make effort to discuss the modal decamped method based on complex modes (Igusa, et el.  
1984, Skinner, et el, 1993). Zhou and Yu (2004) derived the complex complete quadratic combination (CCQC) 
method for the non-classically damped linear system, which is completely in real form, and the complex square 
root of the sum of squares (CSRSS) method if correlations among modal responses are ignored. However, for 
either classical damping system or non-classical damping system, multiple fold eigenvalue problems, which is 
frequently emerged in branch system or symmetrical structure of large scale, is not yet attracted sufficient 
attentions in earthquake engineering community.  
 
When structures possess multi-fold-eigenvalues, the orthogonality among different modes no longer exists in 
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most cases. Therefore, in this paper, transfer function method (Chen and Zhu, 1990; Zhen, 2002), the theory of 
line independent of orthogonal relation is adopted to analyze the dynamic response. By using comprehensively 
the theory of linear algebra and complex variable function, the dynamic response analysis method in time 
domain is derived, which is suitable for both non-classically and classically damped linear system with multiple 
fold eigenvalues. The new algorithm not only has explicit physical meaning, but also enables to consider the 
effect of multiple fold eigenvalues. In addition, the response spectrum is introduced successfully and CCQC 
method is proposed, which can consider the effect of multi-fold-eigenvalues. The validity and correction of 
formula are verified through Newmark integration computation of liner structure subjected to prescribed 
earthquake motion. Meanwhile, the results show that, for the structure with multiple fold eigenvalues, the 
calculation errors will be fairly large if simply neglecting the effect of multiple fold eigenvalues. Finally, it is 
pointed out that the method derived in this paper is suitable for computing seismic responses of MDOF classical 
or non-classical damping linear system with or without multiple fold eigenvalues, .  

 
 

2. ESTABLISHMENT AND EXTENSION OF TRANSFER FUNCTION MATRIX FOR LINEAR 
SYSTEM  

 
As it has been known, for a discrete system, having N degrees of freedom, the equations of motion in terms of 
nodal displacements are expressed as: 

( )t+ +Mx Cx Kx = f                                  (2.1) 
where M , C and K are the NN × mass, damping and stiffness matrices, x  is 1×N nodal displacement vector 
which describes the dynamic response of the structure , N is an arbitrarily large integer, and ( )tf  is  1×N  
nodal load vector. 
 
If damping matrix does not satisfy the decoupling condition based on real modes, that is, when system is not the 
classical damping system, the Eq.(2.1) has to be solve by state space method. Let [ ]TT =y x x , Eq. (2.1) can be 
rewritten into a group of linear differential equations of one order and the corresponding eigenvalue problem 
can be defined as non-zero solution of following equation: 

( ) 0s + Φ =A B                                      (2.2) 
in which 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0 M
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,  

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

M 0
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0 K
 

Obviously, it is equivalent to the eigenvalue problem as follow 
( )2 0s s φ+ + =M C K                                   (2.3) 

and [ ]λφ φΦ = . 
     
When structures possess multi-fold-eigenvalues, the orthogonality among different modes no longer exists in 
most cases, so transfer function method is used to analyze this case. 
 
Using Laplace transfer, Eq.(2.1) can become into the equation in the complex-field (shortened ‘s’ field) based on 
the parameter iβαs +−= , i.e. 

( ) ( ) ( )2s s s s+ + =M C K X F                              (2.4) 
that is 
                                        ( ) ( ) ( )s s s=Z X F                                (2.5) 
in which ( )sZ is the impedance matrix in s-field of system, which is nonsingular and symmetric matrix for the 
restraint system and has inverse matrix, hence we can get 

( ) ( )( ) ( ) ( ) ( )1
s s s s s

−
= =X Z F H F                             (2.6) 

where 
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( ) ( )( ) ( )( )
( )( )

( )
( )

1 adj
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s s
s s

D ss
−

= = =
Z J

H Z
Z

                           (2.7) 

is called as transfer function matrix. When external excitation and initial condition of system are definitive, the 
dynamic response in s-field for every generalized coordinates of system will depend on matrix ( )sH , whose 
property reflects the dynamic performance of system. In Eq.(2.7), ( ) ( )( )detD s s= Z  is the determinant of 
matrix ( )sZ , which can be denoted as the 2N -order polynomial with real coefficients concerning parameter 
s  , that is 

( ) ∑
=

++++==
N

r

N
N

r
r sbsbsbbsbsD

2

0

2
2

2
210                        (2.8) 

In addition, ( ) ( )( )adjs s=J Z is the companion matrix of matrix ( )sZ , which is a N N×  symmetric matrix and 
the element ( )ijJ s  can be written as ( )2 1N −  order polynomial with parameter s , that is  

( )
2 2

2 2 2
0 1 2 2 2

0

N
k N

ij k N
k

J s a s a a s a s a s
−

−
−

=

= = + + + +∑                   (2.9) 

Then, the element ( )sHij  of transfer function matrix can be denoted as  

( ) ( )
( )

2 2 2
0 1 2 2 2

2 2
0 1 2 2

N
ij N

ij N
N

J s a a s a s a sH s
D s b b s b s b s

−
−+ + + +

= =
+ + + +

                  (2.10) 

It can be named as the transfer function in s-field of system. 
 
Because ( )sD  is the polynomial with real coefficients, through equality ( ) 0=sD , we can get N2  roots in the 
complex-field. If suppose z distinct roots zsss ,,, 21 , the overlapped number of every multi-fold-root are 
respectively zkkk ,,, 21 , and Nkkk z 221 =+++ . Then Eq. (10) can be expressed as    

                          ( ) ( )

( ) ( ) ( ) ( )

1 2
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r

r
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rkr rz
ij ij ij ij

ij z k
k r r r r
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⎛ ⎞
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∑
∏

            (2.11) 

in which, 1r
ijp ， 2r

ijp ，…， rrk
ijp are undetermined constant. We will discuss these constant according to the two cases 

as follow. 
 
 
2.1 Single Eigenvalue rs  
 
When eigenvalue rs  is the single-root, according to the Heaviside expansion theorem, Eq.(2.11) can be written 
as 

( ) ( ) ( ) ( )

1 2

2
1

l

l

lkl l rz
ij ij ij ij

ij k
l l rl ll r

p p p p
H s

s s s ss s s s=
≠

⎛ ⎞
= + + + +⎜ ⎟⎜ ⎟− −− −⎝ ⎠
∑                   (2.12) 

Multiple by ( )rs s−  in both side of Eq. (2.12), and let rs s→ , then the every parameter, besides the r
ijp , in the 

right side of equality are all zeros, and we can obtain 

                ( ) ( ) ( ) ( )

( ) ( )

( )

( )
1 1

lim lim
r r l l

ij ij rr
ij r ij r z zs s s s k k

r l r l
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s s s s s s
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= =
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= − = − =
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           (2.13) 

 
 
2.2. Multiple fold Eigenvalue rs  
 
When eigenvalue rs  is the multi-fold-root, the order number of pole corresponding to the transfer function 
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( )ijH s  is greater than 2. Let us define the undetermined constants 1r
ijp , 2r

ijp , …, rrk
ijp . When overlapped number 

of eigenvalue rs  is the rk , we can easily approve that the relational expression followed by is valid, that is 
( ) ( ) ( ) ( )2' 0rk

ij r ij r ij rJ s J s J s−= = = =                             (2.14) 
( ) ( ) ( )1 1 !rk

ij r r rJ s k G s− = −                                (2.15) 
Multiple by ( ) rk

rs s−  in both side of Eq. (2.11), and let  

( )
( )

1

1
l
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l
l
l r

V s
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=
≠

=
−∏

                                  (2.16) 

then 

( ) ( ) ( ) ( )1 21 2

1

r r r

z
k k rkr r

ij ij r ij r ij
r

J s V s p s s p s s p− −

=

⎡ ⎤= − + − + +⎣ ⎦∑                       (2.17) 

Let rs s→ in Eq.(2.17) and use the relation in Eq.(2.14), we can get 
0rrk

ijp =                                       (2.18) 
Use Leibnitz’s rule and calculate the first derivative in both side Eq.(2.17), and let rs s→ and consider the 
relation of Eq.(2.14), we can get 

1 0rrk
ijp − =                                      (2.19) 

By this procedure，the undetermined coefficients can be obtained. That is 
2 3 0rrkr r

ij ij ijp p p= = = =                               (2.20) 
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Substitute the Eq.(2.21) into Eq.(2.11), and using symbol r
ijp  to replace the symbol 1r

ijp , then we can get 

( ) ( )

( ) 1

1

r

rz
ij ij

ij z
k r r

r
r

J s p
H s

s ss s =

=

= =
−−

∑
∏

                         (2.22) 

From complex variable function, the expression of undetermined coefficient r
ijp  is the residue in pole rs  for 

function ( )ijH s , that is  
                              ( ) ,r

ij ij rp Res H s s⎡ ⎤= ⎣ ⎦                              (2.23) 
 
The preceding analysis shows that, if the z  eigenvalues are different, the every element in transfer function 
matrix can be expressed as the sum of z  simple fractions according to the z  different eigenvalues. The 
numerator of every simple fraction can be expressed by the residue corresponding to eigenvalue (pole).  
    
Since the every element in transfer function matrix can be expressed as the sum of z  simple fractions 
according to the different eigenvalues, then transfer function matrix is also expanded as the sum of simple 
fractions according to the different eigenvalues, that is 

                                         ( )
1

rz

r r

s
s s=

=
−∑ PH                                (2.24) 

in which, rP is the residue matrix corresponding to eignvalue (pole) rs , which can be determined by Eq.(2.23).  
 
 
3. DYNAMIC RESPONSES IN TIME DOMAIN FOR LINEAR SYSTEM 
  
In practice, the eigenvalues normally occur in complex conjugate pairs for the damped system, but for highly 
damped systems, an even number of them can be real (Inman and Andry jr., 1980), which means the 
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characteristics equation of the system comprises over-critical damping (Clough and Penzien, 1993). We discuss 
the case in paper by Yu and Zhou (2006), so the case will not be handled in this article.  
 
Based on the analysis as above, we suppose 2m  different complex eigenvalues, then Eq.(2.22) can be rewritten 
as  

                               ( )
1

k km
ij ij

ij
k k k

p p
H s

s s s s=

⎛ ⎞
= +⎜ ⎟

− −⎝ ⎠
∑                                (3.1) 

in which ks and ks  represent a pair of conjugate complex eigenvalues, k
ijp and k

ijp are the corresponding residues 
which can be calculated by the Eq.(2.13) and Eq.(2.21) according to the practice cases. In fact, if the overlapped 
number of eigenvalue is equal to 1, the Eq. (2.21) will become to Eq. (2.13). Similarly, the transfer function 
matrix may be expressed by a pair of conjugate eigenvalue, that is 

                                  ( )
1

k km

k k k

s
s s s s=

⎛ ⎞
= +⎜ ⎟− −⎝ ⎠
∑ P PH                                (3.2) 

in which, kP and kP are the a pair of residue matrices in complex pole ks  and conjugate pole ks . 
 
Substitute the Eq.(3.2) into Eq.(2.6), the following equation can be obtained 

( ) ( ) ( ) ( )
1

k km

k k k

s s s s
s s s s=

⎡ ⎤⎛ ⎞
= = +⎢ ⎥⎜ ⎟− −⎢ ⎥⎝ ⎠⎣ ⎦

∑ P PX H F F                   (3.3) 

The inverse transformation of Laplace is used in both Eq.(3.3), we can get 

( ) ( ) ( ) ( ) ( )
1 0 0

k r

t tm
s t s tk k

k

t e f d e f dτ ττ τ τ τ− −

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∫ ∫x P P                 (3.4) 

Suppose: 
                        k k ks iα β= − + , k k ks iα β= − −                         (3.5) 

where k k kα ζ ω=  and 21k Dk k kβ ω ω ζ= = − are damping coefficient and damped frequency of the k -th mode 
respectively, and the free vibration frequency kω and the corresponding critical damping ratio kζ can be 
deduced from the general orthogonality relations. Separate real and imaginary parts of residue matrix and 
combine the contributions of a pair of conjugate values, then the structure response showed by Eq.(3.4) can be 
obtained   

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 10 0

2 cos 2 sink k

t tm m
t t

k k g k k g
k k

t e t y d e t y dα τ α τβ τ τ τ β τ τ τ− − − −

= =

= − − −∑ ∑∫ ∫x u v       (3.6) 

where ( )Re k
k =u P MI  and ( )Im k

k =v P MI  are the 1N × vector, in which ( )Re kP  and ( )Im kP  represent 
the real and imaginary parts of residue matrix kP , respectively. 
 
If the Duhamel integration for ( )cos k tβ  is substituted by sine Duhamel integration (Zhou and Yu, 2004), the 
Eq.(3.6) can be written as 

                                    ( ) ( ) ( ){ }
1

m

k k k k
k

t q t q t
=

= +∑x A B                            (3.7) 

in which  
( )2k k k k Dk kζ ω ω= − −A u v                              (3.8) 

2k k= −B u                                  (3.9) 
( )kq t can be expressed as solution of the following equation.  

( ) ( ) ( )22 ( )k k k k k k gq t q t q t y tζ ω ω+ + = −                        (3.10) 
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4. CALCULATION METHOD BASED ON RESPONSE SPECTRA 
 
The deviation or mean square response of ( )x t in Eq. (3.10) is:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

2
z z

i j i j i j i j i j i j
i j

E t q t q t q t q t q t q t
= =

⎡ ⎤⎡ ⎤ = < > + < > + < >⎣ ⎦ ⎣ ⎦∑∑2x A A B B B A       (4.1) 

in which the symbol < > represents operation of calculation of average. Let us calculate covariances 
( ) ( )i jq t q t< >、 ( ) ( )i jq t q t< > and ( ) ( )i jq t q t< > , and substitute into Eq.(4.1), we can get  

2 2 1/ 2 2 1/ 2

1 1
[ ( )] [ 2 ] ( ) ( )

z z
dd vv vd

i j ij i j i j ij i j i ij i j
i j

E t q t q tρ ωω ρ ω ρ
= =

= + + < > < >∑∑x A A B B B A          (4.2) 

in which the calculation and discussion of displacement correlation coefficient dd
ijρ , velocity correlation 

coefficient vv
ijρ  and displacement-velocity correlation coefficient vd

ijρ  can be seen in reference (Zhou and Yu, 
2004). 
 
If we assume as usual that the maximum response max

( )tx  is proportional to the root of the mean square 
response, the following closed-form formula of complex mode response-spectrum superposition which 
considers the effect of multiple fold eigenvalues, i.e. the complex complete quadratic combination (CCQC) 
formula is deduced: 

1/ 2

max max max
1 1

( ) [ 2 ] ( ) ( )
z z

dd vv vd
i j ij i j i j ij i j i ij n m

i j
t q t q tρ ω ω ρ ω ρ

= =

⎡ ⎤
= + +⎢ ⎥
⎣ ⎦
∑∑x A A B B B A          (4.3) 

 
 
5. NUMERICAL EXAMINATION AND APPLICATIONS 
 
A single-sphere network shell is considered in this paper, whose diameter is 10m and height is 5m. The lattice 
layout of network shell is the ‘sunflower’ form. The material is the seamless steel pipe whose sectional 
dimension is expressed as: Ф35×2 (the bar in ring dimension of network shell), Ф15×2 (diagonal brace).  
Young’s modulus is 2.1×1011N/m2 of the materials and uniformly distributed load is 200Kg/m2. In addition, the 
bearing of network is the fixed hinge bearing, and the plain and three-dimensional views are figured in Fig.1 and 
Fig.2, respectively. The serial numbers of structural nodes are shown in Fig.1. Six freedom degrees are 
considered for every node. Therefore, there are 36 freedom degrees in total. 
 
Define the damping matrix as α β= +C M K , in which M and K  are the structural mass and stiffness 
matrices, respectively, and let 0.1757α = (1/s), 0.00173β = (s), then the first two damping ratios are equal to 
0.02.  
 

                  
Fig. 1 plain view and node layout      Fig. 2 Three-dimension structural view 

                   
The NS component of the El-Centro earthquake acceleration recorded on May 18, 1940 earthquake in California, 
which contains energy over a broad range of frequencies, is used as a ground motion input. Via mode analysis 
procedure and transfer function method, the dynamic response analysis is carried out in Matlab platform. The 
modal properties of the structure are given in Table 5.1. It can be seen that 14 pairs of multiple fold eigenvector 
appear for the single network shell, in which the first two modes are multiple fold. Then the modes 
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corresponding to the multiple fold eigenvalues do not possess orthogonality. Table 5.2 shows the displacement 
peak value of X  and Y  directions, in which the values in the column 2 is the nodal displacements calculated 
by Newmark- β  numerical method, and the values in column 3 is the results calculated by the Eq. (3.7) 
deduced in this paper, which coincide with the results calculated from Newmark numerical method. The 
comparison of two calculation methods verified the correction of Eq. (3.7). Calculation results coming from 
simple neglecting the effects of multiple fold eigenvalues is shown in column 4, which indicate that fairly large 
errors, as shown in column 5, can be produced by the simple calculation.     

 
Table 5.1 Modal properties of the structure 

Mode number frequency Damping ratio Mode number frequency Damping ratio
1 25.4 0.0202 19 264.3 0.1067 
2 25.4 0.0202 20 295.4 0.1190 
3 26.4 0.0202 21 295.4 0.1190 
4 26.4 0.0202 22 390.5 0.1569 
5 26.7 0.0202 23 390.5 0.1569 
6 28.3 0.0203 24 434.7 0.1745 
7 28.3 0.0203 25 557.1 0.2233 
8 30.0 0.0205 26 557.1 0.2233 
9 30.0 0.0205 27 824.7 0.3302 

10 31.3 0.0206 28 974.2 0.3900 
11 32.3 0.0208 29 974.2 0.3900 
12 32.3 0.0208 30 981.9 0.3930 
13 33.4 0.0210 31 981.9 0.3930 
14 37.3 0.0217 32 1162 0.4650 
15 37.3 0.0217 33 1174.9 0.4702 
16 58.0 0.0276 34 1174.9 0.4702 
17 64.6 0.0298 35 1652.7 0.6612 
18 64.6 0.0298 36 1652.7 0.6612 

 
 

Table 5. 2 The maximum displacements in the X and Y direction (*10-3) （unit：cm） 
X direction  

Node Newmark β−  Eq.（3.7） MSM* error（%） 
1 4.2805 4.2805 3.4809 18.68 
2 4.9746 4.9746 4.0413 18.76 
6 1.0370 1.0370 0.9490 8.49 
4 4.5863 4.5863 4.1125 10.33 
5 2.7632 2.7632 2.6935 2.52 
6 2.1349 2.1349 1.5145 29.06 

Node Y direction 
1 4.2805 4.2805 5.4590 27.53 
2 4.0519 4.0519 3.9579 2.32 
6 3.4237 3.4237 4.8582 41.90 
4 1.6093 1.6093 1.9321 20.06 
5 5.1787 5.1787 6.9161 33.55 
6 1.2342 1.2342 3.1368 154.16 

* MSM: Modal superposition method 
 
 
7. CONCLUSIONS 

 
According to theoretical analysis and numerical examination in this paper, some conclusions are obtained:   
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1)  For the linear system, the complex modal superposition method, Eq.(3.7), completely in real form, is 

deduced by using transfer function method, in which the effect of multiple fold eigenvalues on structural 
response is considered. The new algorithm is not only concise, but also convenient to be understood and 
grasped by the engineers. The validity of formula is verified through Newmark integration computation of 
liner structure subjected to prescribed earthquake motion. In addition, the response spectrum is introduced 
successfully and CCQC method is proposed, which can consider the effect of multi-fold-eigenvalues. 

 
2)  For the linear system with multiple fold eigenvalues, the calculation errors will be fairly large if simply 

neglecting the effect of multiple fold eigenvalues. 
 
3)  It is pointed out that the method derived in this paper is suitable for computing seismic responses of MDOF 

classical or non-classical damping linear system with or without multiple eigenvalues.  
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