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ABSTRACT : 

A numerical method is presented to analyze the seismic response of liquefiable ground. The method is based on
the element free Galerkin method and h-refinement procedure. The Zienkiewicz and Zhu (Z-Z) error estimator 
using the T-Belytschko (TB) stress recovery scheme is incorporated into the method for the a posteriori error 
estimation. The effective cyclic elasto-plastic constitutive model is used to describe the non-linear behavior of 
saturated soils. The efficacy of the method is demonstrated by comparing the results of an embankment on 
liquefiable ground computed by the proposed method and the finite element method. 
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1. INTRODUCTION  
 
Many structures were damaged during the 1964 Niigata earthquake and 1995 Hyogoken-Nanbu earthquake 
caused by large deformation of liquefied soils. Although the finite element method (FEM) has been widely used 
in engineering computations, the results obtained by the FEM strongly depend on mesh configuration when
dealing with large deformation caused by liquefaction. Recently developed meshless method could overcome
these disadvantages for meshless method does not use any element. On this meaning, meshless method is an
affective alternative, and it has been used for liquefaction simulation and produced good results (Sato T and
Matsumaru T, 2003; TANG Xiao-Wei et al, 2002). Among many meshless methods, element free Galerkin 
method (EFGM) proposed by Belytschko et al. (1994) is the most promising and well-developed method. The 
EFGM differs from the FEM by using the moving-least-square (MLS) interpolation (Lancaster and Salkauskas, 
1981). On the other hand, as a type of numerical approximation method, errors are inevitable in analytical
results obtained by EFGM. Evidently, uniformly increasing nodes during discretization minimizes error, but
producing a heavy calculation burden. Hence, an automatic adaptive refinement procedure which only increases 
nodes in the region with large error should be incorporated into the meshless method. 
 
In this paper, an automatic adaptive refinement procedure is added to the EFGM to solve the liquefaction
problem under earthquake loading. The adaptive refinement employs the a posteriori error estimator and the
h-refinement fission procedure. Shape functions are established by moving least-square approximants and the
weight function is chosen to be a quartic spline function. The seismic response of an embankment resting on 
saturated sand was analyzed, and the nodes with large error were well refined.  
 
 
2. MOVING LEAST SQUARE APPROXIMATION 
 
In the EFGM, variables are approximated by the MLS interpolants. The MLS approximant (Lancaster and 
Salkauskas, 1981) ( )hu x  is posed as follows 
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where ( )jp x  is monomial in the space co-ordinates, T [ , ]x y=x , and ( )ja x  its coefficient.  
 
At each point x , ( )ja x  is so chosen as to minimize the weighted residual L2-norm: 
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where n is the number of nodes in the neighborhood of x  for which the weight function ( ) 0Iw − ≠x x , and 

Iu  refers to the nodal index of u at I=x x . The minimum of J with respect to ( )a x gives  
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where T ( )w=A p x p and T ( )w=B p x .Therefore, the approximation is obtained as 
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where the shape function ( )Iφ x is defined by  
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The weight function ( ) ( )I Iw w= −x x x plays an important role in EFGM. The weight function should be
non-zero only over a small neighborhood of Ix .Usually, ( ) ( ) ( )I I I Iw w w d= − =x x x , where I Id = −x x is the 
distance between the two points Ix and x . Quartic spline weight function is considered in the present
formulation: 
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where mId is the size of the compact support of Ix .  
 
 
3. WEAK FORM AND NUMERICAL IMPLEMENTATION 
 
3.1. Governing Equations and Variational Formulations 
 
Based on Biot’s two-phase mixture theory, the equation of motion for the total mixture can be simplified to  
 

                                       , 0ij j i ib uσ ρ ρ+ − =&&                                 (3.1)
 

where ijσ is the Cauchy total stress, ib is the body force acceleration, ρ is the density of mixture and iu&& is the 
skeleton acceleration. Substituting the equation of fluid motion into the equation of mass conservation, and 
assuming the distribution of porosity to be smooth enough in the soils, the final form of continuity equation is 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

                                
2

2 ( ) 0f
f ii ii

i f

p n p
x k K

γ
ρ ε ε∂

− − − =
∂

&& & &                              (3.2)

 
where n  is the porosity ratio, fρ and fγ are the density and the unit weight of fluid respectively, k is the 
permibility coefficient, fK is the bulk modulus of the fluid phase, p is the excess pore pressure, ix the coordinate 
and iiε the strain. The u-p approximation (Zienkiewicz et al, 1982 and 1984; Akai K and Tamura T, 1978) is
valid for low frequency problem of dynamic analysis.  
 
Eqs.3.1 and 3.2 are satisfied at the end of each time step, t t+ Δ . In the updated Lagrangian method, the 
relevant quantities, such as stress and strain, are correlated with the reference configuration at time t , and the 
weak formulations are derived as 
 

                    
( )2

1
t dt t dt

t dt t dt t dt

tt dt t dt t dt t dt
i i ij ijt

t dt t dt t dt t dt t dt t dt t dt
i i i i ij ijA

u v d S dt E d

T v d A b v d E d

ρ δ δ

δ ρ δ σ δ

+ +

+ + +

+ + + +

Ω Ω

+ + + + + + +

Ω Ω

Ω + Ω =

+ Ω − Ω

∫ ∫ ∫
∫ ∫ ∫

& &&&

&
             (3.3)

 

           , 0
t dt t dt t dt t dt

f ft dt t dt t dt t dt t dt t dt t dt t dt t dt
f ii ii ii

f

n
d p d d pd

k kK
γ γ

ρ ε ε
+ + + +

+ + + + + + + + +

Ω Ω Ω Ω
Ω − Ω − Ω + Ω =∫ ∫ ∫ ∫&& & &     (3.4)

 
where iv is the velocity of soil skeleton, ib the body force per unit volume, iT the traction, Ω the integral 
volume, ijE the Lagrange strain tensor and ijS the second Piola-Kirchhoff stress tensor. 
 
3.2. Governing Equations for Element-free Method 

Using two dimensional element-free Galerkin method, employing interpolation functions to express the
displacement of soil skeleton and excess pore water pressure, adding rayleigh damping, the ultimate discrete 
governing equations are given as 
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where N 、 hN  are moving least square shape functions of u  and p respectively, lB is the geometric matrix, 

hB the distribution tensor of pore pressure variation, eptσ the effective stress tensor, b the body force tensor, 

T the traction tensor and n is the unit normal to surface, A 、 nlB 、 vB are symmetry matrix、non-linear strain 
matrix and volumetric strain matrix respectively.  
 
The Newmark method is used to solve the dynamic equations (3.5a) and (3.5b), the parameters β and are set 
respectively as 0.3025 and 0.6 to ensure numerical stability. For saturated soil, a cyclic elasto-plastic model 
proposed by Oka is employed, in which a new stress-dilatancy relationship and cumulative strain-dependent 
characteristics of the plastic shear modulus have been incorporated. The constitutive model is fit for analyzing
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elasto-plasticity and liquefaction of saturated soil and its details are described by OKA F et al (1999). 
 
 
4. ERROR ESTIMATION AND ADAPTIVE REFINEMENT 
 
4.1. Definition and Evaluation of Error 
 
The error of the EFGM solution can be defined as the difference between the exact and the EFGM solution. 
 

                                    he = −u u u   he = −σ σ σ                                (4.1)
 

In Eq. (4.1), hσ is the EFGM stress. In the error estimate process, the rather accurate values instead of the exact
solution are used to calculate errors because the exact solution is not easy or impossible to obtain. In this study,
we use recovery stress pσ  to replace the exact stress σ . 
 
The direct definitions of error described in Eq. (4.1) are not convenient for use in the process of error
estimation. In this study, we used the energy norm of stress to measure error. The difference between pσ and 

hσ  will then be used to calculate the estimate error norm, the approximation of the error in the energy norm for
the whole solution domain can be calculated as  
 

                  { } { }1 2 1 2
1 T 11 1

2 2
( ) ( ) ( ) ( )eT e p h p hE x x d d− −

Ω Ω
= Ω = − − Ω∫ ∫σ D σ σ σ D σ σ             (4.2)

 
The local error norm at a point ix x= can be measured as follows 
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The exact energy norm u is not known in advance, during the adaptive refinement, it will be approximated

by hu , the energy norm of the EFGM solution. That is 
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The estimated average relative error of the problemη , can be calculated as  
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The local error indicator for i -th node is defined in a similar way as 
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As the central idea of the error estimator builds around the construction of a smoothed or projected stress field
as an approximation of the exact stress, one can expect that the accuracy of the recovered stress will affect the
efficiency of the error estimator. In this study, the T-Belytschko’s stress recovery scheme(TB scheme) is used
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which is a popular recovery stress scheme first suggested by Tabbara et al (1994) and then subsequently used
by Chung and Belytschko (1998) for error estimation in the EFGM. The recovery stress field TBσ can be written
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In Eq. (4.7), ( )h

ixσ is the EFGM stress evaluated at node i , TB
iΦ is a set of recovery MLS shape functions and 

TBn is the number of nodal points whose support includes the point x.  
 
4.2. H-version Mesh Refinement 
 
In the refinement process, an acceptable relative error limit tarη must first be given. If the relative error, iη of 
the i -th node exceeds this limit, then the new adaptive nodes will be generated (LIU Xi, 2000). The refinement 
scheme is shown in Fig 1. The refinement scheme is that, if Im *0.5d l> （where Imd is the minimum distance 
between the refined node and its surrounding nodes, l is the minimum permeable distance between nodes.）, the 
following nodes will be generated for the refined node: 
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Figure 1  The h-refinement strategy of a node in two dimension 

 
The new node falls outside the domain is ineffective. The parameters of refined node are transferred to the new
adding nodes, and the variables of the new nodes are interpolated from values of the old nodes. The next 
calculation step is based on the new node discretization. 
 
 
5. NUMERICAL ANALYSIS 
 
Seismic analysis of an embankment by the h-adaptive EFGM is introduced. The embankment constructed on
saturated sand is shaken by an earthquake in x-direction. The dimension and material distribution of the 
embankment and soil foundation is shown in Fig.2, the material 1 and 2 are saturated sands, material 3 is filling
soil without pore water, and the parameters are shown in table 1. The parameter definitions are those introduced 
by Oka et al. (1999). Initial stresses of the nodes are calculated for gravity. Input earthquake acceleration is 
shown in Fig.3, the maximum value is 7.22m/sec2. 
 
The curves of extra pore water pressure ratio (EPWPR) at point A is given in Fig.3 for three cases, coarse nodal 
discretization with fixed 356 nodes that the perpendicular distance between two nodes is 1.0m, fine nodal
discretization with fixed 1397 nodes that the perpendicular distance between two nodes is 0.5m and FE
analysis. Reduction of the effective soil stress due to the increased excess pore water pressure ratio leads to
significant loss of soil strength and stiffness. When the excess pore water pressure ratio reaches 1.0, full
liquefaction occurs at about 5.0s. The curves of the two EFG cases behave similarly which indicates that nodal
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density has little affection on liquefaction process. 
 

Table1  Soil parameters of the embankment 
Material parameter Material 1  Material  2 Material 3 
Density                        ρ(t/m3) 1.857 1.990 1.54 
Coefficient of permeability         k (m/s) 1.9E-5 2.5E-6  
Initial void ratio                  e0 0.856 0.676 0.856 
Compression index               λ 0.0064 0.0250 0.0264 
Swelling index                   κ 0.0055 0.0025 0.0082 
Initial shear modulus ratio          G0/σm0 829 1280 829 
Over consolidation ratio            OCR 1.0 1.0 1.0 
Phase transformation stress ratio     Mm 0.91 0.91 0.91 
Failure stress ratio                Mf 1.17 1.51 1.12 
Hardening parameter              B0 1600 3000 3000 
Hardening parameter              B1 16 60 0.0 
Hardening parameter              Cf 0.0 0.0  
Plastic reference strain             γp 0.01 0.005  
Elastic reference strain             γE 0.03 0.05  
Dilatancy parameter               D0 5.0 1.0 0.0 
Dilatancy parameter               n 1.2 5.0 0.0 

 

 
Figure 2 Embankment example 
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           Figure 3 Input acceleration        Figure 4  EPWPR response of the embankment at point A

 
In Figs. 5(a) and (b), vertical and horizontal displacements on the top of the embankment calculated by the
adaptive EFGM are compared with those three cases. From these figures, it is revealed that EFGM analysis
provides a reasonable solution as FE analysis, and the adaptive refinement effectively improves accuracy. 
 
The refined nodal discretization at times t=9.0s, 10.0s and 12.0s are shown, respectively, in Figs.6 (a)-(c). The 
adaptive refinement process starts at t=8.0s for the initial coarse nodal distribution with fixed 356 nodes. The 
relative error limit is 0.13. Adaptive refinement was done once 0.5s, nodes are increased in regions with large
error step by step. One node is fissioned only once and the new adding nodes are not allowed to fission to make 
the contour clear, which means that these nodes will not be further refined even if the error for them exceeds the
limit of relative error. 
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(a) Vertical displacement                    (b) Horizontal displacement 

Figure 5 Vertical and horizontal displacement on the top of the embankment 
 

 
(a) Refined nodal arrangement at time t=9.0s 

 
(b) Refined nodal arrangement at time t=10.0s 

 
(c) Refined nodal arrangement at time t=12.0s 

Figure 6 Refined nodal arrangement at different times 
 
In Fig.7, accuracies of the three different EFGM cases are compared by showing the three average relative error
curves. The average relative error of the fixed 356 nodes is larger than that of the fixed 1397 nodes. In the 
adaptive EFGM analysis, the average relative error value decreased once the adaptive procedure started at
t=8.0s. As the adaptive process proceeds, the average relative error value approaches the value for the fixed fine 
nodal discretization. Reduction of the average relative error confirms the efficacy of the adaptive EFGM.  
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Figure 7 Comparison of average relative error 

 
 

6. CONCLUSION 
 
The adaptive element free Galerkin method is applied to nonlinear analysis of saturated soil including
liquefaction phenomenon. In previous research, mesh-free method has been used to predict the behavior of
saturated soil. In this study, the adaptive EFGM is applied to seismic analysis. The fission procedure belonging 
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to h-refinement, indicated by the a posteriori error estimator using the T-Belytschko (TB) stress recovery 
scheme is incorporated into the method. The results obtained in this study show that this method produces a
reasonable solution as FE analysis and improves accuracy significantly. It allows us to solve particular 
problems that the FEM has some difficulties in analyzing. 
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