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ABSTRACT: 

Soil-structure interaction can affect seismic responses of structures due to foundation flexibility and energy 
dissipation. The significance of these effects depends on the dynamic properties of foundation and structure as
well as earthquake ground motions. This paper investigates the dynamic response of soil-foundation-structure 
interacting (SFSI) systems subjected to pulse-type near-fault ground motions. Through rigorous dimensional 
analysis, the normalized structural responses are represented in terms of dimensionless Π-products. This 
approach brings forward the self-similarity, an invariance with respect to scale or size, which decisively
describes the interactive behavior of SFSI system. By allowing its foundation to translate and rotate, the 
normalized structural responses of a SFSI system are computed and compared with that of the fixed-base 
structure counterpart to evaluate the significance of soil-structure interaction. Extensive numerical simulations 
manifest the dimensionless parameters that dominate SSI effects and reveal the circumstances where SSI effects
are of practical importance. For both linear and nonlinear structures with rocking foundation, the SSI effects are 
insignificant when the structure-to-pulse frequency ratio (Πω) is smaller than 1.5. They can amplify the 
structural response when Πω is higher than 1.5 and the structure-to-foundation stiffness ratio (Πk) falls into 
certain range. SSI can result in significant large displacement demand on nonlinear structure. Furthermore, 
foundation rocking is able to enhance the SSI effects by shifting and enlarging the response amplification zone.
The dimensional analysis offers a systematic way of evaluating SSI effects.  
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1. INTRODUCTION 
 
The seismic response of a building or bridge can be significantly affected by the foundation and surrounding
soil as well as the interaction between soil and structure. Soil-foundation-structure interaction effects, or so 
called soil-structure interaction (SSI) effects, have been observed and studied since 1930s. SSI has two aspects, 
kinematic interaction and inertial interaction. Kinematic interaction is characterized by modifying the free-field 
motion to be the base input motion. Inertial interaction is generally quantified by the period lengthening ratio 
and the foundation damping factor (Jennings and Bielak, 1973; Veletsos and Meek, 1974). This study will
focus on the inertial SSI interaction, which is generally more important than kinematic interaction for structures
with shallow foundation (Jennings and Bielak, 1973; Stewart et al., 1999a,b). 
 
A large amount of research has been conducted to identify the factors that govern the inertial interaction effects, 
to determine the conditions under which the interaction effects are practically significant, and to develop
simplified analytical procedures accounting for SSI effects. Jennings and Bielak (1973) found out that the 
interaction effects are influenced by the relative stiffness of the superstructure and its foundation, the structure
height-to-foundation radius ratio, the fixed-base structural damping ratio as well as the structure-to-soil mass
ratio. SSI occurs predominantly in the fundamental mode response of a structure and may be neglected for 
higher modes. They pointed out that whether SSI will amplify the structural response depends upon the
modified natural frequency, the modified damping ratio, and the particular earthquake input. Veletsos and 
Meek (1974) identified the wave parameter, the height-to-radius ratio, and the ratio of exciting frequency to 
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fixed-base fundamental frequency as the three most important parameters controlling inertial interaction
phenomenon. They concluded that interaction is significant only for SFSI systems with a small wave parameter 
(< 20). Nevertheless, Veletsos and Meek (1974) did not define the circumstances where SSI will result in
reduction or increase in structural response. Bielak (1975) revealed that amplified structural response may 
occur if SSI leads the system natural frequency approaching a prevailing ground motion frequency and
neglecting interaction effects is not always conservative. Evaluating SSI effects through system identification 
analysis for 77 strong motion data sets at 57 building sites, Stewart et al. (1999a,b) identified the ratio of
structure-to-soil stiffness, quantified by wave parameter, as the most critical one among all the important 
factors that influence the inertial interaction effects. They observed that inertial interaction effects are generally
small for SFSI systems with a wave parameter bigger than 10. However, all the research work reviewed above
has not defined clearly the circumstances where SSI effects are detrimental to structures. Neither has the 
dependency of SSI effects on the input ground motion been understood thoroughly. Therefore, more studies are
needed to determine the conditions under which SSI will amplify or reduce the seismic responses of structures. 
 
Among the large volume of earthquake records, typical near-fault ground motions are distinctive with the 
severe pulses in both velocity and displacement time histories (Bertero, 1976; Mavroeidis and Papageorgiou,
2003). Increasing database of near-fault ground motion records along with theoretical studies have confirmed 
and highlighted the presence of severe energetic pulses near the causative fault of an earthquake due to either
rupture directivity or tectonic fling (Abrahamson, 2000). Alavi and Krawinkler (2004) demonstrated that 
structures with a period longer than the pulse motion period respond very differently from structures with a
shorter period. Therefore, SSI effects might be important in estimating the seismic demands imposed by 
near-fault ground shaking since SSI tends to lengthen the fundamental natural period of a structural system. 
 
In this paper, attempts are made to relate the SSI effects on structural responses directly to the mechanical
properties of the SFSI system and the characteristic length scales of the ground motion through rigorous 
dimensional analysis. The influence of foundation rocking on the SFSI system is investigated. Furthermore, the
conditions are recognized under which SSI effects can amplify the structural responses subjected to near-fault 
ground motions. 
 
 
2. PULSE REPRESENTATION OF NEAR-FAULT GROUND MOTIONS 
 
Near-fault ground motions may contain most of the seismic energy from the fault rupture arriving in a single 
coherent long-period pulse of motion. The pulse-type ground motions are particularly destructive to civil 
structures in a sense that they force the structures to dissipate the input energy with few large displacement 
excursions. Simple pulse models that capture the leading kinetic characteristics of near-fault ground motions
were used widely for parametric studies of structures under earthquake (Alavi and Krawinkler, 2004; Makris 
and Black, 2004a,b; Kalkan and Kunnath, 2006; Mollaioli et al., 2006). The cycloidal pulses proposed by 
Makris and Chang (2000) are used in this study to resemble near-fault ground motions. These cycloidal pulses
are physically realizable for their zero final velocity and finite acceleration.  
 
A cycloidal pulse is fully defined with just two parameters, the acceleration amplitude, ap, and period, Tp. As
defined by Makris and Chang (2000), three distinct cycloidal pulse-type excitations are available, i.e. type-A, 
type-B and type-Cn pulses. Type-A pulse (one-sine acceleration pulse) results in a forward ground displacement
that is not recovered at the end of earthquake. Type-A pulse is usually a result of fling step. Type-B pulse 
(one-cosine acceleration pulse) is characterized by a forward-back velocity time history and a fully recovered 
ground displacement at the end of earthquake. Type-Cn pulse exhibits n main cycles in its displacement history, 
where n could be equal to any integer. Figure 1 shows the cycloidal pulses that can be distinguished in real
near-fault seismic motion records. Recent study by Mollaioli et al. (2006) showed that the cycloidal pulses are 
capable of representing the salient features of the structural response to near-fault ground motions within 
limitations. As far as displacement and input energy spectra are concerned, structural response to idealized
pulses constitute a good approximation of those computed with recorded near-fault ground motions, for both 
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the elastic and inelastic structures. Therefore, the pulse-type motions are used to evaluate the structural 
response of SFSI system in this paper. 
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Figure 1 Near-fault ground motions (dashed lines) and their resemblance of pulse-type motions (solid lines). 

Left: Rinaldi (1994 Northridge); Center: Gilroy (1989 Loma Prieta); Right: New Hall (1994 Northridge) 
 
 
3. DIMENSIONAL ANALYSIS OF STRUCTURE ON FLEXIBLE FOUNDATION SUBJECTED TO 
PULSE-TYPE EXCITATION 
 
Previous studies (Jennings and Bielak 1973; Veletsos and Meek 1974) have also chosen dimensionless 
parameters to evaluate SSI effects based on physical observations and shown that the dimensionless 
formulation is able to offer insights into this complex problem. This study derives the dimensionless parameters 
through rigorous dimensional analysis and examines the significance of these parameters in terms of affecting
the structural responses of SFSI systems. 
 
3.1. Linear Structure on Flexible Foundation Subjected to Pulse-Type Ground Motion  
 
A linear SFSI system can be simplified as a lumped 3DOF model as shown in Figure 2(a), where ms, ks, cs, hs
denote the mass, stiffness, damping constants and height of the structure respectively, while mf is the 
foundation mass. The three degrees of freedom are selected as the foundation displacement relative to the
ground uf, the foundation rocking angle θ, and the net structural displacement relative to ground us excluding 
rocking. For the translational DOF of foundation, kf and cf stand for the equivalent spring and dashpot values of 
soil-foundation respectively. kθ and cθ are respectively the equivalent spring and dashpot values of 
soil-foundation in the rotational DOF. The equations of motion of this lumped model subjected to ground 
motion, 

gu&& , can be formulated as: 
 

( ) ( ) ( )
( ) ( )

( )

s s s s s f s s f s g

f f s s s f f s s s f f f g

s s s s t s s g

m u h c u u k u u m u
m u c u c c u k u k k u m u
m h u h I c k m h uθ θ

θ

θ θ θ θ

+ + − + − = −

− + + − + + = −

+ + + + = −

⎧
⎪
⎨
⎪
⎩

&&&& & & &&

&& & & &&

&& && &&& &&

                  (3.1)

 
where It denotes the sum of the mass moments of inertia of structure and foundation about their own centroidal 
axes. 
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Figure 2 Lumped SFSI systems: (a) linear structure, (b) nonlinear structure 
 
The structural response quantities of interest are the peak drift, max max ( ) ( )drift s f

t
u u t u t= −⎡ ⎤⎣ ⎦ , which measures 

the structural deformation and the peak acceleration, max max ( ) ( ) ( )s s s g
t

a u t h t u tθ= + +⎡ ⎤⎣ ⎦
&&&& && , which is related to 

the maximum base shear force via max max
b s sV m a= . By dimensional analysis (Langhaar, 1951; Barenblatt, 1996; 

Tang and Zhang, 2008), the peak structural response to a pulse-type ground motion with acceleration amplitude 
ap and circular frequency 2 /p pTω π=  is formulated in the dimensionless form as: 
 

max 2 max

2 2
, , , , , , ,,drift p f f f ss s t s

s
p p p s s f s s f s

u m k ca I k c
a a m k k m h k h k

θ θ

θ

ω ωω ω
φ ξ

ω
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

                 (3.2)

 
where /s s sk mω =  and /(2 )s s s sc mξ ω=  are respectively the natural circular frequency and damping ratio 
of the corresponding fixed-base structure. The characteristics of the acceleration pulse, ap and ωp, are selected 
as repeating variables in order to normalize the structural response to the length scale of the energy pulse in the 
ground motion, 2 2 24e p p p pL a T aπ ω= =  (Makris and Black, 2004a). Equation (3.2) indicates that the 

normalized maximum structural response ( max 2
drift p pu u aωΠ ≡  or max /s pa a aΠ ≡ ) is a function of the normalized 

frequency ( /s pω ω ωΠ ≡ ), the fixed-base structural damping ratio ( sξ ξΠ ≡ ), the foundation-to-structure mass 

ratio ( /m f sm mΠ ≡ ), the stiffness ratio ( /k f sk kΠ ≡ ), the normalized damping coefficient ( /c f s fc kωΠ ≡ ), 

the normalized moment of inertia ( 2/( )I t s sI m hΠ ≡ ), the normalized rocking-to-translation stiffness ratio 

( 2/( )k f sk k hθ θΠ ≡ ), and the normalized dashpot ( /c sc kθ θ θωΠ ≡ ) of foundation. The last three Π-terms ( IΠ , 

kθΠ , and cθΠ ) can be disregarded for cases with negligible foundation rocking, such as squat structures. 
 
To investigate the SSI effects, it is necessary to express the fixed-base response of a structure also in a
dimensionless form (Makris and Black, 2002a). The Π-terms that completely describe the fixed-base response 
of a linear structure are listed in Table 3.1 along with the Π-terms for flexible-base linear structures. The 
response ratios, , ,/u flex u fixedΠ Π  and , ,/a flex a fixedΠ Π , between the flexible-base structure and the fixed-base 
structure are reasonable measures of the SSI effects on structural response. A response ratio higher than the unity 
indicates that the SSI effects amplify the structural response while a response ratio below the unity indicates the 
reduced structural response due to SSI. SSI effects become insignificant when the response ratio is around one. It is 
observed that the response ratio , ,/a flex a fixedΠ Π  is approximately equal to , ,/u flex u fixedΠ Π  for ordinarily 

damped ( 20%sξ ≤ ) linear SFSI systems since there exists max 2 max
s s drifta uω≈  (Clough and Penzien, 1993). 
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Table 3.1 Dimensionless Π-terms of SFSI Systems 
Linear structure Nonlinear structure  

Fixed-base Flexible-base Range Fixed-base Flexible-base Range 

uΠ  max 2

drift p pu aω  max 2

drift p pu aω  N/A max 2

drift p pu aω  max 2

drift p pu aω  N/A 

aΠ  max

s pa a  max

s pa a  N/A max

s pa a  max

s pa a  N/A 

ωΠ  s pω ω  s pω ω  0.1 – 15 0s pω ω  0s pω ω  0.1 – 15 

ξΠ  
sξ  sξ  0.02 – 0.1 sξ  sξ  0.02 – 0.1 

mΠ  ––– f sm m  0.1 – 1 ––– f sm m  0.1 – 1 

kΠ  ––– f sk k  0.1 – 1000 ––– 0f sk k  0.1 – 1000

cΠ  ––– f s fc kω  0.01 – 10 ––– 0f s fc kω  0.01 – 10 

IΠ  ––– ( )2

t s sI m h  0.002 – 20 ––– ( )2

t s sI m h  0.002 – 20

kθΠ  ––– ( )2

f sk k hθ  0.01 – 100 ––– ( )2

f sk k hθ  0.01 – 100

cθΠ  ––– sc kθ θω  0.001 – 10 ––– 0sc kθ θω  0.001 – 10

uyΠ  ––– ––– ––– 2

sy p pu aω  2

sy p pu aω  0.01 – 5 

εΠ  ––– ––– ––– sε  sε  0.01 – 0.2 
 
 
3.2. Nonlinear Structure on Flexible Foundation Subjected to Pulse-Type Ground Motion  
 
Incorporating the bilinear hysteretic behavior of superstructure with Bouc-Wen model (Wen, 1976), a SFSI
system can be modeled as a lumped 3DOF system as shown in Figure 2(b). Compared with the linear lumped 
model discussed in the preceding section, only the linear elastic structural spring is replaced by a Bouc-Wen 
bilinear spring characterized by the initial stiffness ks0, the yield displacement usy, the ratio of post- to
pre-yielding stiffness εs. Denoting us and uf as the relative structural and foundation displacements to ground 
respectively, excluding the rigid body motion due to foundation rocking θ, the equations of motion of the 
nonlinear lumped 3DOF system can be written as: 
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c c
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+ + − + − + − = −
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+ + + + = −

⎧
⎪

− +⎨
⎪
⎩

&&&& & & &&

&& & & &&

&& && &&& &&

             (3.3)

 
where z is a hysteretic variable governed by the ordinary differential equation shown below:  
 

( ){ }20[( ) / 1 0.5 sign ( ) 0.5] s fs f syz u u z zu u u= − ⋅ − + ⋅⎡ ⎤− ⎣ ⎦& && & &                     (3.4)

 
Through rigorous dimensional analysis, it is revealed that the normalized structural response of the nonlinear 
lumped SFSI system, max 2

u drift p pu aωΠ =  or max
s pa a aΠ = , is a function of ten dimensionless terms (also see in 

the sixth column of Table 3.1) as shown below: 
2max 2 max

0
2 2

, , , , , , ,, , ,pdrift p f f f ss s t s
s

p p p p s s f s s f s
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s

uu m k ca I k c
a a a m k k m h k h k

θ θ
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ω
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⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

                (3.5)
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where 0 0 /s s sk mω =  is the pre-yielding natural frequency of the fixed-base structure. The dimensionless 
terms that govern the normalized response of the corresponding fixed-base nonlinear structure is obtained 
through dimensional analysis and listed in the fifth column of Table 3.1. The ductility demand imposed on the 
nonlinear structure can be formulated as max / /drift sy uyuu uμ = = Π Π . Similar to the linear structure, the response 
ratio between flexible-base response and fixed-base response of the nonlinear structure measures the SSI 
effects. It is worth noting that the response ratio of structural drift, , ,/u flex u fixedΠ Π , is equal to the response ratio 

of ductility demand, /flex fixedμ μ , provided that the normalized yield displacement, uyΠ , keeps the same. 

Unlike the linear SFSI system, the response ratio , ,/a flex a fixedΠ Π  is no longer close to , ,/u flex u fixedΠ Π for 
nonlinear structure. 
 
 
4. NUMERICAL RESULTS  
 
In order to study the SFSI systems through numerical analysis, the range of interest for each independent 
Π-term needs to be determined first. Based on the 57 building sites studied by Stewart et al. (1999b) and the 
work done by Makris and Black (2000b), the ranges of the independent Π-terms are suggested in Table 3.1 for 
typical civil structures. In this study, the fixed-base structural damping ratio takes the constant 5%, i.e. Πξ=0.05 
for both linear and nonlinear structures. A representative value of Πm=0.25 is used since numerical results 
reveal that the SSI effects are insensitive to the foundation-to-structure mass ratio within the practical range. 
 
Extensive numerical analyses are carried out to explore the SSI effects on the linear/nonlinear structural
responses to pulse-type ground motions. Figure 3 plots the drift response ratio, , ,/u flex u fixedΠ Π , as a function 
of Πω, Πk, and Πc for both linear and nonlinear structures under type-B pulse excitation. The other 
dimensionless parameters used in this simulation are Πuy = 0.05, Πε=0.05, ΠI=0.02, Πkθ=0.01, and Πcθ=0.001.
The selection of the last three parameters allows the foundation to rock under earthquake motion, a common
case for tall structures. The results show that SSI effects become negligible for Πk>1000 as the response ratio 
approaching one while SSI effects tend to reduce the structural response when Πk≤1. For linear structure, SSI 
may amplify the normalized drift in the neighborhood of 10≤Πk≤100 when Πω>1 while the similar
amplification occurs for nonlinear structure when Πω>3. This observation indicates that the structural yielding 
helps to reduce the effects of SSI when Πω<3 but can result in much larger displacement demand due to SSI
effects when Πω>3. Similar trends associated with SSI effects are also identified in the acceleration response,
except that the normalized drift usually increases to a larger degree than the normalized acceleration if there is 
amplification due to SSI. Furthermore, numerical results reveal that these trends are almost independent of the 
type of the input pulses. For nonlinear structures with large Πuy (yield displacement) or Πε (post-yielding 
stiffness) the effects of SSI have similar trends observed for linear structure. 
 
Foundation rocking is an important aspect of SSI, the significance of which is governed by the dimensionless
terms ΠI, Πkθ, and Πcθ in Table 3.1. By increasing any one of the three governing parameters, the foundation
rocking will be constrained and the structural response will approach the situation without foundation rocking.
Figure 4 compares the response ratios of normalized structural drifts of nonlinear structures with normalized 
foundation rotational spring of Πkθ=0.01 and Πkθ=100 under type-B pulse. For the latter, the rocking mode is 
constrained because of a very stiff rotational spring. As observed in Figure 4 by comparing these two cases, 
allowing foundation to rock can reduce the structural drift of the nonlinear structure when Πω<2. The structural 
drift of the flexible-base structure is typically lower than that of the fixed-base counterpart when Πk≤1 
indicating SSI is beneficial. However, this is not true if the foundation is not engaged in rocking motion since
amplified responses due to SSI can be observed in the case of Πkθ=100. When the frequency ratio Πω>2, the 
foundation rocking results in shift of response amplification zone toward high stiffness ratio Πk range and 
extension of amplification zone to the entire range of Πc. The similar trend is also observed for linear structures
(Tang and Zhang 2008).  
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Figure 3 Response ratio of normalized structural drift between flexible- and fixed-base linear(L)/nonlinear(NL)

lumped structures with Πξ =0.05, Πuy = 0.05, Πε=0.05, ΠI=0.02, Πkθ=0.01, and Πcθ=0.001 for normalized 
frequency, Πω=0.1, 0.5, 1, 2, 3, and 4, under type-B pulse excitation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 Response ratio of normalized structural drift between flexible- and fixed-base lumped nonlinear 

structures with Πξ =0.05, Πuy = 0.05, Πε=0.05, ΠI=0.02, and Πcθ=0.001 for normalized frequency, Πω=0.1, 0.5, 
1, 2, 3, and 4, under type-B pulse excitation: Πkθ=0.01 vs. 100 

 
 

5. CONCLUSIONS  
 
A new way is introduced in this paper to investigate the soil-structure interaction effects through rigorous 
dimensional analysis of the SFSI system combining the characteristics of the soil-foundation-structure system 
as well as the length scales of the input ground motion. Numerical simulations, interpreted in the framework of 
dimensional analysis, reveal that SSI effects highly depend on the pulse-to-structure frequency ratio, the
foundation-to-structure stiffness ratio, the foundation rocking, and the development of nonlinearity in structure.
The observations with the lumped SFSI models in this study can be applied to real structures provided that the
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seismic response of the structure is dominated by a certain vibration mode. 
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