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ABSTRACT : 

An efficient meshless technique for simulating wave motions in saturated porous media is introduced in this
paper. Using radial point interpolation method (RPIM) and considering the precision requirement in wave 
motion simulation, a lumped-mass RPIM for saturated porous media with clear physical concepts is derived.
Combining explicit time integration with the lumped-mass RPIM leads to a decoupled radial point interpolation
method (decoupled RPIM) for dynamic analysis without solving algebra equation set. A two-dimensional 
problem is calculated by the proposed decoupled RPIM, the ordinary RPIM，and the finite element method 
(FEM). The accuracy and efficiency of these methods are compared, which demonstrate that the proposed 
decoupled RPIM has comparable accuracy with the ordinary RPIM and the finite element method, but has high
efficiency in simulating wave motions in saturated porous media. 

KEYWORDS: saturated porous media, meshless method, radial point interpolation method, explicit
integration scheme 

1. INTRODUCTION  
 
Porous media consists of a solid phase, usually referred to as a matrix or skeleton, as well as closed and open 
pores. Examples of porous media are soils, rocks, the human bone, et al. The mechanics of porous media is of 
utmost relevance in many disciplines in engineering and science, such as geotechnical engineering,
biomechanics, and materials science. In geotechnical earthquake engineering, multiphase dynamics plays a
major role in the prediction of the local site response where the buildup of fluid pressure induced by seismic
shaking could lead to a rapid loss of strength of the saturated soil deposit, a phenomenon commonly called as
liquefaction. A fluid-filled porous medium theory was proposed by Biot (1941) to analyze this transient
response. Most of the transient response problems are solved by numerical methods such as finite element 
method (FEM) and finite difference method (FDM) in conjunction with appropriate time integration schemes.
Typical FEM methods were proposed by Ghaboussi and Wilson(1972), Zienkiewicz and Shiomi (1984), 
Provost(1985), Sandhu and Hong(1987), Yiagos and Prevost(1991), Diebels and Ehlers(1996), Huang et
al.(2004). However, it is difficult for FEM to analyze the problems associated with moving boundary and large
deformation. Recently developed meshless methods could overcome these disadvantages because meshless 
methods do not use any element.  
In recent years, meshless methods have achieved remarkable progress. A group of meshless methods have been
developed including smooth particle hydrodynamics (SPH) (Gingold and Monaghan,1977), diffuse element
method (DEM) (Nayroles et al.,1992), element free Galerkin (EFG) method (Belytschko et al.,1994),
reproducing kernel particle method(RKPM) (Liu et al.,1995), the meshless local petrov-Galerkin (MLPG) 
method (Atluri and Zhu,1998), the local point interpolation method (LPIM) (Gu and Liu, 2001), the radial point 
interpolation method (RPIM) (Wang and Liu,2001), and the local radial point interpolation method (LRPIM)
(Liu and Gu 2001).  
Wang (2001,2002) discusses the numerical solution of Biot’s consolidation theory using the PIM method and 
RPIM method. Karim et al.(2002) analyzed transient response of saturated porous elastic soil under cyclic
loading using EFG method. The RPIM is advantageous over the meshless methods based on moving least
square (MLS) method in implementation of essential boundary condition and over the PIM with polynomial
basis in avoiding singularity when shape functions are constructed. However, the present RPIM used for
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dynamics needs to solve algebra equation sets at each time step, and the efficiency is very low, which prevent 
the RPIM to solve large scale problem in engineering. So, we need to find a meshless method which is not only
accurate but also efficient.  
In this paper, an efficient RPIM method is proposed for the transient response of saturated porous media. This 
paper is organized as follows. First, the governing equations for fluid-saturated elastic porous media are 
described. Then its weak form is developed. Considering the precision requirement in wave motion simulation,
a lumped-mass RPIM with clear physical concept is derived. Explicit time integration is employed, which 
combined with the lumped-mass RPIM leads to dynamic analysis without solving algebra equation set. Finally, 
a two-dimensional problem is calculated by the proposed RPIM, the ordinary RPIM and the FEM, and the
accuracy and efficiency are compared.  
 
 
2. MATHEMATICAL MODEL  
 
2.1. Governing Differential Equations  
 
In this paper, we mainly introduce a decoupling technique, which is not limited to any specific model. So, 
without loss of generality, the model introduced by Men (1982) is selected. Its equations are reformulated as: 
For the solid skeleton:  
 

                    (1 ) ( ) (1 )T T
s w sn P b n ρ′− − + − = −L σ L U u u& & &&                  (2.1) 

For the pore fluid: 
                     ( )T

w wn P b nρ− + − =L u U U& &&&                         (2.2) 
 
Compatibility conditions(assuming that the initial pore pressure and initial volumetric strain are zero)： 
 

                       [ (1 ) ]w s
wnP E ne n e− = + −                       (2.3) 

 
The isotropic linear elastic constitutive law for solid skeleton and the relation between strain and displacement 
are 

′ =σ De          s
we = L u                   (2.4)          

s=e L u        w
we = L U                   (2.5) 

 
Where, sL  and wL  are differential operator matrix, ′σ  and P are the effective stress and the fluid 
pressure respectively, U  and u  are the displacements of the fluid and solid skeleton respectively, sρ and 

wρ  represent the densities of the solid skeleton and fluid respectively, n is porosity and b  is defined as 
2b n k= ，where k  is the permeability coefficient of the pore fluid. wE is the bulk modulus of the pore 

fluid， se and we  denote the volumetric strains of the solid skeleton and pore fluid respectively, e is the solid 
strain tensor，D  is the matrix of material constants.  
Substituting Eqns.2.3-2.5into Eqn.2.1 and Eqn.2.2 respectively, one obtains equilibrium equations in term of
U and u . 

[ ](1 ) (1 ) ( ) (1 )T T
s s w w w w s

n E n n b n
n

ρ−
+ + − + − = −L DL u L L U L u U u u& & &&         (2.6) 

 
                     [ ](1 ) ( )T

w w w w wE n n b nρ+ − + − =L L U L u u U U& &&&                  (2.7) 
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2.2. Boundary Conditions  
 
The governing Eqn.2.6and Eqn.2.7must be complemented with boundary conditions  
 

− =u u 0       − =U U 0                            (2.8) 
where，u  and U  are, respectively, the prescribed displacements of solid and fluid phase on the boundary

DΓ . 
ˆ − =nσ t 0             ( )P P− =n 0                    (2.9) 

where, σ  is the average stress vector of the solid phase, its tensor form is (1 )ij ij ijn Pσ σ δ′= − − , ijδ is 

Kronecker delta function. t  and P  are, respectively, the prescribed average traction of the solid phase and
the pore fluid pressure on the NΓ , the vector n  is the unit outward normal to the boundary NΓ , n̂ is a 
matrix with unit outward normal components as its elements. 
 
 
3. GALERKIN WEAK FORM 
 
The weighted residual forms of the Eqn.2.6and Eqn.2.7have the following forms 
 

[ ]
  

(1 ) (1 )  T T T
I s s w w w w

n n n dV
nΩ

−⎛ ⎞+ + −⎜ ⎟
⎝ ⎠∫ W L DL u L E L U L u  

( )
 

( ) (1 )  0T
I sb n dVρ

Ω
+ − − − =∫ W U u u& & &&                      (3.1) 

 
[ ]( )

 
(1 ) ( )  0T T

I w w w w wE n n b n dVρ
Ω

+ − + − − =∫ W L L U L u u U U& &&&           (3.2) 

Where, IW  is the weight function at node I . 
In order to obtain the discretized system equations, the global problem domain Ω  is represented by properly 
distributed field nodes. Using the RPIM shape function, we can approximate the trial function for the
displacement at a point x  as  

1
( , )

N

J J
J

t
=

= ∑u x Φ u         
1

( , )
N

J J
J

t
=

= ∑U x Φ U                   (3.3) 

where, N  is the number of nodes in the support domain of a sampling point at x , and JΦ  is the matrix of 
shape functions of node J , Ju  and JU  are the nodal displacements. 
Substituting Eqn.3.3 into Eqn.3.1 and Eqn.3.2, we can obtain: 
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Integrating the first term on the left hand side of Eqn.3.5 and Eqn.3.6 by parts, and considering I I=W Φ for 
Galerkin method, we can obtain 

  
1 1 1 1 1

N N N N N
s ss sw ss sw s
IJ J IJ J IJ J IJ J IJ J I

J J J J J= = = = =

+ + + + =∑ ∑ ∑ ∑ ∑M u K u K U C u C U F&&& &         (3.6) 

1 1 1 1 1

N N N N N
w ws ww ws ww w
IJ J IJ J IJ J IJ J IJ J I

J J J J J= = = = =

+ + + + =∑ ∑ ∑ ∑ ∑M U K u K U C u C U F&& &&        (3.7) 

 
Where the nodal mass matrices are equal to 
 

           
 

(1 )s T
IJ I s Jn dρ

Ω
= − Ω∫M Φ Φ     

 

w T
IJ I w Jn dρ

Ω
= Ω∫M Φ Φ             (3.8) 

The nodal damping matrices, representing the viscous coupling between both phases, are given by 
 

  
 

ss T
IJ I Jb d

Ω
= Ω∫C Φ Φ    sw ws ww ss

IJ IJ IJ IJ= = − = −C C C C               (3.9) 

The nodal stiffness matrices are expressed as 
 
      2

 
( (1 ) )ss T T

IJ sI sJ wI w wJn n E d
Ω

= + − Ω∫K B DB B B    
 

ww T
IJ wI w wJnE d

Ω
= Ω∫K B B      (3.10) 

           
 

(1 )sw T
IJ wI w wJn E d

Ω
= − Ω∫K B B    

 
(1 )ws T

IJ wI w wJn E d
Ω

= − Ω∫K B B       (3.11) 

                          sI s I=B L Φ        wI w I=B L Φ                       (3.12) 
Finally, the external nodal forces are given by 
 

 s
N

S T
I I d

Γ
= Γ∫F Φ t�        

 w
N

w T
I I nPd

Γ
= Γ∫F Φ n�                (3.13) 

Eqn.3.6 nd Eqn.3.7 can be viewed as the system equations of the thI field node. Assembling all system 
equations of all field nodes based on the global numbering system, we can obtain the final global system
equations and consistent-mass matrix, which leads to time-consuming algebra equation sets solving at each 
time step. Here, we call this method as the conventional RPIM. 
 
 
4. DECOUPLED RPIM 
 
To guarantee the accuracy in simulating wave motion, the nodal spacing is required to be substantially smaller 
than the smallest wavelength considered. Thus, the spatial variations of acceleration and mass density can be
ignored in support domain, that means 

J I=u u&& &&            ( 1, , )J I J N= =U U&& && L                 (4.1) 
Substituting Eqn.4.1 into Eqn. 3.7 and Eqn.3.8, we have 
 

1 1 1 1

N N N N
s ss sw ss sw s

I I IJ J IJ J IJ J IJ J I
J J J J= = = =
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1 1 1 1

N N N N
w ws ww ws ww w

I I IJ J IJ J IJ J IJ J I
J J J J= = = =
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where， 
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Time integration of the semi-discrete finite element Eqn.4.2 and Eqn.4.3 can be performed by explicit 
procedure proposed by Li et al.(1992), we can obtain 

2
1

1 1 1 1

1 ( )
2

N N N N
p p p ss p sw p ss p sw p sp
I I I IJ J IJ J IJ J IJ J Is
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where, tΔ is the time step, p
Iu ( p

IU ) and p
Iu& ( p

IU& ) are the solid (fluid) displacement and velocity vectors of
the thI  node at time p tΔ  respectively. 
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Using Eqns.4.5-4.8, we can obtain the displacements and velocities of all field nodes without solving algebra
set of equations. 
 
5. NUMERICAL EXAMPLES 
 
Consider a plane strain problem in two-dimensional domain as shown in Fig.1.  The boundaries are all fully
fixed and impermeable. Suppose that a point force ( )F t  acts on the solid skeleton at point (1.0,1.0) along y 
direction. The function ( )F t  is defined as  

sin(8 ),0 0.125
( )

0, 0.125
t t

F t
t
π ≤ ≤⎧

= ⎨ >⎩
                       (5.1) 

The material constants used in computation are ： 6 22.5 10 kN/msE = × , 

0.3v = , 5 22.5 10 kN/mwE = × , 22.5 10 m/sk −= × , 3 33.0 10 kg/msρ = × , 3 31.0 10 kg/mwρ = × , 0.4n = . The 
dimension of the model is 2m 2m×  and the domain is represented by regularly distributed 441(21 21)×
field nodes and irregularly distributed 441 field nodes respectively as plotted in Fig.2. A total of
100 (10 10)× regularly rectangular background cells are used for the numerical integrations. In each rectangular 
background cell, 16 Gauss points are employed. The MQ-RBF is used in RPIM and the shape parameters used 
are 1.03q = , 4.0cα =  and 0.1cd = . The linear polynomial terms are added in the RPIM-MQ. The 
dimensionless size of the support domain is 1.5sα = . For comparison, the conventional RPIM, the 
conventional FEM and decoupled FEM results are computed. Here, The conventional method refers to which 
uses consistent mass and Newmark time integration, and the decoupled method refers to which uses lumped
mass and explicit time integration in this paper. The integration time step is 0.001t sΔ = .  
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                                  (a) regular nodes distribution  b) irregular nodes distribution 
 
Figure 1 Two-dimensional point source model   Figure 2 Nodal arrangements for the plane strain problem  
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Figure 3 Displacement of solid phase in y 
direction at the point (1.0,1.0) 

Figure 4 Displacement of fluid phase in y 
direction at the point (1.0,1.0) 
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Figure 6 Displacement of fluid phase in y  
direction at the point (1.0,1.0) 
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The displacements at points A(1.0,1.0) for uniform nodal distribution case are plotted in Figure 3 and Figure 4, 
with the solid line denoting the results of the decoupled RPIM, the dash line representing the results of the 
conventional RPIM, the dot line denoting the solutions of the decoupled FEM, and the dash-dot line 
representing the solutions of the conventional FEM. For symmetry, the displacements in x direction at point
A(1.0,1.0) is zero. From the results, it is found that the agreement between the decoupled RPIM and
conventional RPIM solutions are satisfactory before 1.2t s=  and not so well satisfactory after 1.2t s= . The 
same phenomenon can be found between the decoupled FEM and conventional FEM solutions. This may result 
from the different algorithm damping of the time integration schemes used in decoupled method and
conventional method in this study. The discrepancy may be reduced if time integration schemes with the same
algorithm damping are used in decoupled method and conventional method. The deviations between the 
conventional FEM and conventional RPIM solutions (or between the decoupled FEM and decoupled RPIM
solutions) are due to the different accuracy of FEM and RPIM in the case of this study. On the whole, the 
proposed decoupled RPIM has the comparable accuracy with the conventional RPIM and FEM. 
The results for non-uniform nodal distribution case are plotted in Figure 5 and Figure 6. From these figures, it 
can be found that the effect of nodal distribution on displacements of fluid phase is larger than that on
displacements of solid phase. Compared with FEM, the accuracy of decoupled RPIM is acceptable for irregular
nodal distribution. 
The computational costs of different methods are given in Table 5.1. It can be seen that the CPU time of the 
conventional RPIM is about 88 times as much as that of the decoupled RPIM, and the CPU time of the
conventional FEM with 400 elements is about 77 times as mush as that of the decoupled RPIM. Using the same 
mass form and time integration, the RPIM has worse computational efficiency than FEM, that is because the 
node number within a support domain in RPIM is generally greater than the node number of an element in FEM
and the shape function of RPIM is more complex than that of FEM. The computational cost of the conventional
RPIM increases more rapidly than that of decoupled RPIM as the degree of freedoms increases. Thus, it can be 
predicted that the high efficiency of the decoupled RPIM is more obvious in larger model. 
 
 

Table 5.1 Computational cost of different methods  
Method Number of nodes CPU time (seconds) 

Decoupled RPIM 441 649.8 
Conventional RPIM 441 57600.9 

Decoupled FEM 441(400 elmemts) 584.0 
Conventional FEM 441(400 elmemts) 50400.8 

 
 
6. CONCLUSIONS 
 
An efficient meshless method, namely, the decoupled RPIM is developed to analyze the transient response of
saturated porous elastic media. This method employs the radial point interpolation to construct the meshless
shape functions. The discrete equations for saturated porous elastic media are obtained using the global
weak-forms, and a lumped-mass RPIM is derived by meeting the requirements of accuracy in wave simulation.
Combing the lumped-mass RPIM with explicit time integration scheme leads to the decoupled discrete 
equations, which can be solved one by one at one time step avoiding solving algebra equation sets. The RPIM 
shape functions possess the Kronecker delta function property, thus no additional treatment is needed to impose
essential boundary conditions. Numerical examples show that the decoupled RPIM possesses comparable
accuracy with the conventional RPIM and FEM, and is more efficient than the conventional RPIM. 
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