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ABSTRACT: 
 
This paper tries to probe the composition of probability of failure (POF) in reliability-based structural design. 
The focus is on extreme event (EE) related risk of structural failure. Extreme events that may cause structural 
failure are often described by a severity-based threshold which can be a hazard intensity measure or return 
period. Such definition of EE is not directly connected to the POF. In order to quantify its portion of risk in the 
overall POF, a different definition is formulated. It is shown that this new definition of EE delineates a subset of 
failure events which not only coincides with the severity-based definition in terms of probability value but also 
represents the tail properties of the demand and capacity distribution models. Examples are given to illustrate 
the use of this approach to evaluate EE in hazard load comparison for structural design. It is hoped that this 
effort will help to put some EE related structural design issues (e.g. uncertainty of hazard loading, different 
demand and capacity models, the influence of tail property of probabilistic distribution models, extreme event 
limit states, and load combinations etc.) in proper perspective. .    
 
KEYWORDS: probability of failure, extreme events, tail probability, upper tail of demand, lower tail of 
capacity 
 
 
1. INTRODUCTION 
 
In the reliability-based structural design, the overall probability of failure POF, denoted as (PF), plays an 
important role as it is the measurement for uniform reliability of a designed structural system. While the 
accuracy of this probability is highly desirable, the structural design community has long recognized that the 
true risk of structural failure can be largely influenced by many factors. One of these is the probabilistic 
distribution model used to represent design variables. Even under the same statistical moments such as mean 
and standard deviation, Ferry Borges and Castenheta (1983) and Melchers (1999) showed that different models 
may produce significantly different probability values for the two-variable (load and resistance) reliability 
problem. The reason is found to be mainly due to the different tail property of the distribution models and it is 
denoted as “tail sensitivity” issue. This issue is in turn closely related to the extreme events (EE).  
 
AASHTO (2004) describes the frequency of extreme event as “event with return period in excess of the design 
life of the bridge”. Since severe natural hazards or strength deterioration in structures can be expected to have 
very low chance to occur (large return period), extreme events can be regarded as associated with either 
excessive demand or very weak capacity. Reflecting past data and recent events of bridge structure’s damage/ 
failure due to earthquake, hurricane, collision or weakened structural connections, a concern has been raised on 
the appropriateness of current design load (demand) and capacity for these extreme events. This concern 
eventually comes down to the question whether current probabilistic models for the design variables have 
properly represented the EE in the upper tail of demand distribution and lower tail of capacity distribution. It 
would be advantageous to address the above question by quantifying how extreme events are attributed to 
probability of structural failure. 
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Several related works have been developed in this area. Cornell (1996) showed that the probability of structure 
failure subjected to earthquake ground motion is dominated by the seismic hazard curve – annual frequency of 
hazard’s exceeding structure’s median capacity. He provided an explicit method to estimate PF using the hazard 
exceeding probability multiplied by a correction factor which depends on the dispersion of hazard curve and 
capacity’s probability distribution. This method has been widely applied to seismic performance evaluation of 
structures (Ellingwood, 2001). A basic assumption of the method is that seismic hazard curve can be 
logarithmically linearized in the interest region of exceedance rate. Extended from such specific case for seismic 
hazard with approximated demand model, it can be considered for general application to extreme events in 
addition to earthquake, not only with demand (hazard) side but also with capacity side as extreme event 
affecting PF. A probability-based criterion formulated in this study attempts to follow this approach to provide a 
quantification of PF due to extreme events. To include extreme events in general sense, the formulation will 
cover the tail properties of both high demand and low capacity. 
 
In the following of this paper, we first introduce two different ways to define extreme events. Then we show that 
a quantitative link can be established between the two. And this relationship helps to provide a convenient 
approach to physically measure the severity of a hazard loading and numerically relate the probability of such 
event to the risk of structural failure. Some examples are provided to illustrate the use of the methodology in 
hazard load analysis and comparison. 
 
2. RELATIONSHIP BETWEEN EXTREME EVENTS AND PROBABILITY OF FAILURE 
 
2.1. Conceptual Understanding of Extreme Events 
 
EEs can be viewed in many different ways. Preferably, to delineate the severity and rareness of an EE, a 
threshold is attached to a hazard in discussion. Conceptually, a severity-based threshold definition for load and 
resistance related extreme events can be described as  

(1). If the hazard load (demand) produced by a hazard event onto a structure is beyond a pre-set threshold 
then the hazard event is referred to as an excessively high demand (HD) event. The threshold can be 
given by the hazard intensity, load effects or return period. 

(2). If the structural system’s resistance (capacity) to withstand a hazard load (demand) is lower than a 
pre-set threshold, then the structure is referred to as an excessively low capacity (LC) event. The 
threshold is measured by the resistible hazard intensity or level of load effects.  

 
In many of natural hazard studies, extreme natural hazards are often associated with concepts such as risk, 
impact, vulnerability and loss. The advantage of the above definition is that it can be easily integrated with these 
concepts. However, as it is easily noticed that there are no definitive boundaries to determine the threshold 
beyond which a hazard event should be called extreme. For the purpose of this study, we propose to follow the 
approach of Cornell 1996 by setting the threshold for quantitative definitions of “excessively high demand 
(HD)” and “excessively low capacity (LC)” as the median of capacity and demand, respectively. This choice of 
threshold provides two benefits to be shown later: 1) it helps to tie the extreme events to a tail distribution of the 
event occurrence model, and 2) it provides an easy link between severity measurement of the extreme event and 
the overall POF.  
 
Note that the above definition of EE is based on a single-variable (severity) threshold. It is not connected to  
the structural failure, which requires two-variable (capacity and demand) relationship. Following the standard 
definition of probability of failure, the set of structural failure (denoted as F) is considered as the collection of 
events such that in each case the demand exceeds the capacity. 
 
We use the notation of pairs of demand and capacity (d, c) for the following definition. The elements in each 
pair represent values taken from independent distributions of D (demand) and C (capacity), respectively. The 
physical variables of the demand and capacity can be force-based, displacement-based or energy-based design 
structural design parameters from either the structural component level or system level.  
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A set U is defined as the complete probability event space (Eq (1)) and its probability measure is equal to unity 
(100%)  

( ){ }, | ,U d c d D c C= ∈ ∈   (1) 
The two subclasses of extreme events HD and LC, are defined as subsets of U such that 

( ){ }, | , and CHD d c d D c C d m= ∈ ∈ >   (2)   

( ){ }, | , and DLC d c d D c C c m= ∈ ∈ <   (3) 
The aggregated extreme events EE is also a subset of U and is defined as a union of HD and LC 

( ){ }, | , and, orD CEE HD LC d c d D c C c m d m= = ∈ ∈ < >∪  (4) 
 
where { } represents a set, and mX is the median of random variable X. HD and LC are not mutually exclusive 
and not independent. δ and ε represent the probability of HD and LC as calculated by Eqs (5), (6)  

( )[ ] 1 D CP HD F mδ = −=   (5) 

( )[ ] C DP LC F mε ==   (6) 
where the notation P[…] denotes “the probability that …” and FX(x) represents the cumulative density function 
(CDF) of X. 
 
Figure 1 shows the reference markers for mC, mD, δ and ε.. 
 

Df

Cf

CmDm  
Figure 1. mC, mD, δ and ε.. 

 
2.2. Extreme Events Related Probability of Failure 
 
The above defined sets of HD, LC and EE only identify the tails of demand and capacity distributions that are 
associated with the corresponding severity-based EE subsets. As pointed out above, the sets so defined are not 
directly connected to the POF. In order to evaluate the risk associated with these EE tails, we first define a 
failure set F as  

( ){ }, | , andF d c d D c C d c= ∈ ∈ >   (7) 
and 
P[F] = PF  (8) 
where PF is the POF as mentioned before. In the following, we will refine the HL, LC and EE with respect to the 
failure set F. 
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Figure 2. Tail probabilities δ and ε and tail-based PDF fD′ and fC′ 
 
Define a tail-based probability density function (PDF) of D can be constructed by folding (or mirroring) the 
upper tail part of demand PDF with respect to the axis of mC as shown in Figure 2 where fX(x) represents 
probabilistic density function (PDF) of X. And we refer to this PDF as fD′ and it is easy to show that fD´ is located 
on upper part of fD so that the integral of fD´ is smaller than for the fD. A failure set associated with regular 
capacity C and tail-based demand D′ is defined as F_HD and this set is a subset of F because D′ is subset of D. 
By analogy, tail-based PDF of C can be constructed as fC′ and a subset of F associated with the regular demand 
D and tail-based capacity PDF C′ is defined as F_LC. And F_EE is defined as the union of F_HD and F_LC. 
These definitions can be expressed by set relations given below 

( ){ }_ , | ', andF HD d c d D c C d c= ∈ ∈ >   (9) 

( ){ }_ , | , ' 'andF LC d c d D c C d c= ∈ ∈ >   (10) 

_ _ _F EE F HD F LC F= ⊂∪   (11) 
where F_HD and F_LC are subsets of F_EE. Since F_HD and F_LC are not mutually exclusive, the probability 
of F_EE is not a simple summation of probabilities of F_HD and F_LC. Nevertheless, based on the subset 
relationship, probabilities of these subsets satisfy the following condition 

[ _ ] FP F HD P<   (12) 
[ _ ] FP F LC P<   (13) 
[ _ ] [ _ _ ] FP F EE P F HD F LC P= <∪   (14) 

 
In the following subsections, we show that the probabilities of the subsets F_HD and F_LC are equal to δ and  
ε, the probabilities of HD and LC. Once these simple formulas are established, they can be used to assess the 
influence of EE related risk in PF. 
 
2.3. Formulation for POF Due to High Demand Extreme Events: F_HD 
 
We first work on the relationship between P[F_HD], δ and PF for normal (symmetric) distribution of capacity, 
and then prove that this relationship is also validity for lognormal capacity model. 
 
2.3.1 Formulation between δ and PF: symmetrical (normal) PDF of C 
 
It is proved that when C follows the symmetrical (normal), δ is less than or equal to PF. 
 
PF is given as 

( ) ( ){ } ( ) ( )1 1F C D C DP f x F x dx f x F x dx
+∞ +∞

−∞ −∞
= − = −∫ ∫  (15) 

P[F_HD] can be evaluated as (16) considering D´ where the maximum value of FD´ is 2δ instead of 1.0.  
 

( ) ( ){ } ( ) ( )' '[ _ ] 2 2C D C DP F HD f x F x dx f x F x dxδ δ
+∞ +∞

−∞ −∞
= − = −∫ ∫  (16) 

  
As shown in Figure 2, the abscissa of x is converted by setting the new origin at mC, and assign ξ and η as 
starting from new origin toward the right hand direction and left hand direction, respectively. Correspondingly, 
PDF of C and CDF of D´ have the relation of (17) in which + and – signs behind D´ and C indicate the direction 
of ξ and η, respectively. 

( ) ( ) ( ) ( )                  C C C C C Cf f m f f mα α α α+ −= + = −            (17) 

( ) ( ) ( ) ( ) ( ) ( )' ' ' ' ' '                   2D D C D D C D DF F m F F m F Fα α α α α δ α+ − + −= + = − = −  (18) 
The second term in (16) can be separated as 
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( ) ( ) ( ) ( ) ( ) ( )' ' '
C

C

m

C D C D C Dm
f x F x dx f x F x dx f x F x dx

+∞ +∞

−∞ −∞
= +∫ ∫ ∫  (19) 
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Figure 2. PDF of D′ and CDF of D′ 

 
By using  (17) and (18), transformations (20) and (21) can be applied to (19). 

, , , 0,C C Cx m x m dx d x m xη η η η η+ = = − = − = → = = −∞→ = +∞  (20) 
, , , , 0C C Cx m x m dx d x x mξ ξ ξ ξ ξ− = = + = = +∞→ = +∞ = → =  (21) 

Then (19) becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ }

' ' ' '0 0

'0

C

C

m

C D C D C D C Dm

D C C

f x F x dx f x F x dx f F d f F d

F f f d

η η η ξ ξ ξ

δ ξ ξ ξ ξ

+∞ +∞ +∞

− − + +−∞

∞

+ + −

+ = +

= + −

∫ ∫ ∫ ∫

∫
 (22) 

Substituting (22) into (19) and then (19) into (16) provide 

( ) ( ) ( ){ }'0
[ _ ] D C CP F HD F f f dδ ξ ξ ξ ξ

∞

+ − += + −∫  (23)  

 If the PDF of C has symmetric shape, then mean, mode and median coincide. Accordingly, the relation of 
fC-(ξ)= fC+(ξ) is satisfied and it makes the second term as zero in (23) on any value of ξ and then δ ≤ PF is 
satisfied based on (12). Therefore, 
P[F_HD] = δ ≤ PF  (24)  
 
2.3.2 Formulation between δ and PF: lognormal PDF of C 
 
Lognormal distribution is closely related to normal distribution. Accordingly, even if lognormal distribution 
itself is not a symmetrical distribution, by using similar approach for symmetrical distribution, it can be shown 
that P[F_HD]=δ ≤ PF is valid.  
 
When X follows lognormal distribution, the median of random variable X is given as 

ln X
Xm eμ=   (25) 

where μlnX is the mean of lnX. 
 
Given that D and C have positive values, PF can be represented using logarithm as 

( ) ( ){ } ( ) ( )ln ln ln ln[ ] [ln ln ] 1 1F C D C DP P D C P D C f x F x dx f x F x dx
+∞ +∞

−∞ −∞
= > = > = − = −∫ ∫  (26) 

Also, δ can be expressed using logarithm 
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ln
ln[ ] [ln ln ] [ln ln( )] [ln ]C

C C CP D m P D m P D e P Dμδ μ= > = > = > = >  (27) 
Since lnC is symmetrical distribution (normal distribution), mlnC and μlnC coincide. 

ln[ln ]CP D mδ = >   (28) 
Hence, lnC and lnD can replace C and D in (23), respectively. 

( ) ( ) ( ){ }ln ' ln ln0
[ _ ] D C CP F HD F f f dδ ξ ξ ξ ξ

∞

+ − += + −∫  (29) 

lnC is symmetrical about the axis of mlnC, so the second term in (29) can be canceled out. 
[ _ ]P F HD δ=   (30) 

Therefore, δ ≤ PF is satisfied for lognormal C. 
 
2.4 Formulation for Failure related to Low Capacity: F_LC 
Similar to the formulation shown in the above sections for P[F_HD], δ and PF, we can also formulate the same 
relations for F_LC, ε and PF for the low capacity EEs. By analogy, when demand D follows symmetrical 
(normal) or lognormal distributions, the relationship P[F_LC]=ε ≤ PF will hold.  
 
2.5 Formulation for Failure related to Union of High Demand and Low Capacity: F_EE 
We have shown in the above that P[F_HD] and P[F_LC] are equal to δ and ε respectively. However, in most 
cases, since F_HD and F_LC are neither independent nor mutually exclusive, P[F_EE] is not a simple 
summation of δ and ε . The probability of failure p[F_EE] due to combination of high demand and low capacity 
events is evaluated  by the following equation  
 

[ _ ] [ _ ] [ _ ] [ _ _ ]
[ _ _ ]

P F EE P F HD P F LC P F HD F LC
P F HD F LCδ ε

= + −
= + −

∩
∩

 (31)  

When F_HD and F_LC are not independent event subsets P[F_HD∩F_LC] is not equal to δε. Although we do 
not have a formula to calculate this probability, an upper bound of P[F_HD∩F_LC] can be developed. 
F_HD∩F_LC is the failure event set under the two tail-based EE. Therefore, P[F_HD∩F_LC] can be 
considered as 
 

( ) ( ) ( ) ( )' ' ' '[ _ _ ] 2 4C D C DP F HD F LC f x F x dx f x F x dxδ δε
+∞ +∞

−∞ −∞
= ⎡ − ⎤ = −⎣ ⎦∫ ∫∩  (32) 

 

Dm

'Cf

Cm

'Df

 
Figure 3. Infinitely Separated D′ and C′ 

 
 
Despite that P[F_HD∩F_LC] cannot be evaluated in closed form, an upper bound can be developed so long as 
fD'(x) and fC'(x) are relatively far apart as shown in Figure 3 and this large separation condition represents the 
lower bound because the second term in (32) can be treated as below. 
 

( ) ( )' ' 0C Df x F x dx
+∞

−∞
≥∫   (33) 

 
Consequently P[F_HD∩F_LC] is given as 

[ _ _ ] 4P F HD F LC δε≤∩   (34) 
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And P[F_HD∪F_LC] can be expressed as 

[ _ ] [ _ _ ] 4P F EE P F HD F LC δ ε δε= ≥ + −∪  (35) 
Therefore, (35) and (14) give 

4 FPδ ε δε+ − ≤   (36) 
If δ < ¼ and ε < ¼ are satisfied, δ+ε–4δε is closer to PF than δ or ε alone. Since δ+ε–4δε is a lower bound of 
P[F_EE], we denote this value as PEE. 

4EEP δ ε δε= + −   (37) 
 
In this section, PHD (=δ), PLC (=ε) and PEE are developed to show the influence of extreme event to PF and these 
tail probabilities will be compared with PF under different statistical models and parameters in following 
examples. 
 
3. EXAMPLES 
 
In this section, the aforementioned relationships are examined through three case study examples. First, the 
relationship between PHD and PF is numerically simulated using extreme value type-II (for largest value) model 
as the demand distribution model and lognormal model as the capacity distribution model. We check in this 
simulated case how the statistical parameters affect the PHD/ PF ratio. Second, as an approximated combination 
of PHD and PLC, the portion of PEE in PF is simulated. Owing to requirement in the relationship related to EE, 
demand model is also assumed to follow lognormal distribution for evaluating LC events. How much PEE fills 
PF is inspected with respect to the statistical parameters. Third case study is for a design problem, a 
single-column bridge bent subjected to earthquake ground motion is examined. Considering the randomness of 
factors constructing demand value, Monte Carlo Simulation is carried out to generate the demand model. 
 
 
3.1. Case Study 1: Quantification of PHD in PF 
 
Given sets of COV of C (coefficient of variation: σC/μC), central safety factor (μC/μD) and COVD are changed to 
see how PHD/PF is varied with corresponding reliability index β which can be obtained from Φ-1(1-PF). (Φ( ): 
standard normal cumulative distribution function) 

• Demand: extreme value type-II (EVT2); Capacity: Lognormal; PF is evaluated using Simulations. 
• μC/μD = 2.5, 4.5 and 6.5 ; COVC = 0.04, 0.12, and 0.20 ; COVD = 0.1 through 2.0: based typical statistics 

for load (gravity and environmental) and resistance (RC and steel) provided by Ellingwood el al. (1980) 
and Nowak (1999). 

 
Table 1. Portion of PHD in PF under different statistical parameters (Case Study 1) 

COVC = 0.04 COVC = 0.12 COVC = 0.20 
μC/μD = 2.5 μC/μD = 4.5 μC/μD = 6.5 μC/μD = 2.5 μC/μD = 4.5 μC/μD = 6.5 μC/μD = 2.5 μC/μD = 4.5 μC/μD = 6.5 

COVD 

β HD

F

P
P

 β HD

F

P
P

 β HD

F

P
P

 β HD

F

P
P

 β HD

F

P
P

 β HD

F

P
P

 β HD

F

P
P

 β HD

F

P
P

 β HD

F

P
P

 

0.2 3.21 0.960 4.28 0.967   3.09 0.681 4.20 0.711   2.87 0.356 4.03 0.350 4.62 0.158 
0.3 2.64 0.977 3.54 0.989 4.01 0.990 2.57 0.825 3.49 0.821 3.98 0.870 2.43 0.597 3.38 0.589 3.85 0.583 
0.4 2.33 0.985 3.14 0.991 3.55 0.988 2.28 0.885 3.10 0.888 3.52 0.882 2.18 0.717 3.01 0.705 3.45 0.714 
0.5 2.14 0.991 2.88 0.990 3.27 0.988 2.10 0.914 2.85 0.911 3.25 0.915 2.02 0.785 2.78 0.774 3.18 0.772 
0.6 2.02 0.992 2.71 0.992 3.08 0.990 1.98 0.930 2.69 0.931 3.06 0.933 1.91 0.826 2.63 0.821 3.01 0.815 
0.7 1.93 0.993 2.59 0.993 2.95 0.993 1.90 0.943 2.57 0.945 2.93 0.940 1.84 0.849 2.51 0.841 2.88 0.843 
0.8 1.88 0.995 2.51 0.994 2.85 0.994 1.84 0.949 2.49 0.949 2.83 0.948 1.79 0.867 2.44 0.861 2.79 0.858 
0.9 1.83 0.995 2.44 0.993 2.77 0.997 1.80 0.955 2.42 0.953 2.75 0.950 1.75 0.881 2.38 0.873 2.72 0.878 
1.0 1.80 0.995 2.39 0.996 2.72 0.995 1.77 0.959 2.37 0.958 2.70 0.951 1.72 0.890 2.33 0.883 2.66 0.882 
1.1 1.77 0.995 2.36 0.994 2.67 0.993 1.75 0.960 2.34 0.961 2.66 0.960 1.70 0.897 2.30 0.892 2.62 0.896 
1.2 1.75 0.996 2.33 0.996 2.64 0.995 1.73 0.961 2.31 0.959 2.62 0.964 1.69 0.903 2.27 0.895 2.59 0.896 
1.3 1.74 0.996 2.30 0.997 2.61 0.997 1.71 0.964 2.29 0.962 2.59 0.963 1.67 0.907 2.25 0.898 2.56 0.896 
1.4 1.72 0.996 2.29 0.998 2.59 0.996 1.70 0.966 2.26 0.961 2.57 0.964 1.66 0.909 2.23 0.902 2.54 0.899 
1.5 1.71 0.996 2.27 0.997 2.57 0.995 1.69 0.968 2.25 0.964 2.55 0.964 1.65 0.910 2.22 0.905 2.52 0.902 
1.6 1.71 0.997 2.25 0.997 2.55 0.996 1.69 0.968 2.24 0.966 2.54 0.964 1.65 0.917 2.20 0.909 2.51 0.909 
1.7 1.70 0.997 2.24 0.997 2.54 0.996 1.68 0.969 2.23 0.965 2.52 0.967 1.64 0.915 2.19 0.912 2.49 0.911 
1.8 1.69 0.996 2.24 0.996 2.53 0.996 1.67 0.970 2.22 0.968 2.51 0.969 1.63 0.917 2.18 0.912 2.48 0.911 
1.9 1.69 0.997 2.23 0.996 2.52 0.996 1.67 0.969 2.21 0.968 2.50 0.967 1.63 0.919 2.18 0.913 2.47 0.908 
2.0 1.69 0.997 2.22 0.997 2.51 0.996 1.67 0.970 2.20 0.968 2.50 0.969 1.63 0.921 2.17 0.916 2.47 0.913 

 
Followings are observed in the simulation results (Figure 4 and Table 1) 
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1) When COVC is very low (more deterministic on capacity), PHD is almost equivalent to PF shown as 
more than 95% in Fig. 4(a). 

2) If COVD exceeds 1.0, PHD/PF begins to converge to a certain value (0.8~1.0 depending of COVC) 
regardless of μC/μD. 

3) As COVC increases, PHD/PF is decreased as expected on same COVD. 
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(a) COVC = 0.04 with enlarged one 
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Figure 4. Portion of PHD in PF (demand: extreme value type-II & capacity: lognormal) 
*note: numbers on line represent COVD as tenths: e.g. 3 COVD = 0.3; 11 COVD = 1.1 

 
3.2. Case Study 2: Quantification PEE in PF 
 
Under the same parametric conditions as the previous example except using lognormal model as the demand 
distribution model, in this second simulated case study, PHD/PF, PLC/PF and PEE/PF are examined where PF is 
evaluated for the case such that both D and C follow lognormal distributions. 
 
Following observations are made here. (results provided as Figure 5 and Table 2) 

1) Mostly, PHD’s portion coincides with PEE’s. When COVC = 0.20, PLC seems to have little portion in PF. 
PLC has notable quantity only if μC/μD =2.5 as indicated with the arrow in Figure 5(c). This is partly due 
to the shape of Capacity’s lognormal distribution because the left hand side (lower) tail of lognormal 
PDF diminishes faster than right hand side (upper) tail. So lognormal distribution for capacity may not 
be appropriate to capture Low Capacity case. 

2) Since EVT2 has fatter upper tail than lognormal, PHD/PF of EVT2 demand is larger than that of 
lognormal demand model when μC/μD, COVC and COVD are same. Analogously, in lognormal demand, 
reliability index β has larger value and PHD/PF converges slower than in EVT2. Also converged level 
(PHD/PF) is affected by μC/μD as COVC increases unlikely to EVT2. This is due to ‘tail sensitivity’ as 
indicated by Melchers (1999). 
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Figure 5.  Portion of PHD, PLC and PEE in PF (demand: lognormal & capacity: lognormal) 
*note: numbers on line represent COVD as tenths: e.g. 3 COVD = 0.3; 11 COVD = 1.1 

 
For some general comparisons of the relevant parameters involved in the the above two case studies, it is 
observed that the ratio PHL/PF or PEE/PF will increase or decrease following the changes of β, COVD, COVC and 
parameter changes. 

1) Under fixed FS and COVC, as COVD becomes larger, correspondingly β is decreased. In this case, 
PEE/PF is increased. This means that, given designed capacity, if uncertainty of demand becomes larger, 
then influence of extreme event is dominant in PF. 

2) Just under fixed COVC, as COVD becomes increasing, but β is intended to be the same level, then FS 
should be raised. In this case, then PEE/PF is slightly increased. This case depicts that, when the 
demand’s uncertainty is increased, the reliability level is intended to be kept then influence of extreme 
event in PF still increased but slightly. 

3) Given fixed COVD, if COVC is increased and β is kept as same, then also FS should be increased. Then 
PEE/PF is decreased. Under same load condition, uncertainty of capacity becomes larger but engineering 
want to keep the same level of reliability, then FS should be increased. In this case, the influence of EE 
to PF is less significant. 

4) Under fixed FS and COVD, if COVC is decreased then β is correspondingly increased. In this case, 
PEE/PF is increased. Once uncertainty about capacity is reduced, e.g. by improved quality control of 
material property, the reliability is increased. This means that as overall reliability becomes less affected 
by non-extreme event, the portion of extreme event occupies more in overall PF. 

5) In general cases, if β is large enough, namely over 3.5 which corresponds to large FS. In this case, the 
influence of extreme event becomes insignificant. In other side, the reliability level is low that means 
low FS in general. So the influence of extreme event becomes dominant. So engineers should pay 
attention to how much the tail properties contribute to overall PF. 
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6) These observations are based on the lognormal capacity model. And mostly the probability of high 
demand composes the combined extreme event dominantly. Conventionally, capacity is modeled to 
follow lognormal distribution e.g. in fragility curves and the calibration of LRFD factors for AASHTO 
(Nowak, 1999). Even though, that model may not enough reflect lower level of capacity. That is 
because lognormal PDF has longer tail on the right hand side. If normal distribution is used, lower 
capacity’s influence to PF can show larger. 

 
Table 2. Portion of PHD, PLC and PEE in PF under different statistical parameters (Case Study 2) 

COVC = 0.04 COVC = 0.12 
μC/μD = 2.5 μC/μD = 4.5 μC/μD = 6.5 μC/μD = 2.5 μC/μD = 4.5 

COVD 

β HD

F

P
P

 LC

F

P
P

 EE

F

P
P

 β HD

F

P
P

 LC

F

P
P

 EE

F

P
P

 β HD

F

P
P

 LC

F

P
P

 EE

F

P
P

 β HD

F

P
P

 LC

F

P
P

 EE

F

P
P

 β HD

F

P
P

 
0.2 4.60 0.619 0 0.619         4.02 0.037 0 0.037   
0.3 3.24 0.900 0 0.900         3.01 0.443 0 0.443   
0.4 2.56 0.964 0 0.964 4.07 0.890 0.000 0.890     2.44 0.724 0 0.724 3.89 0.482 
0.5 2.17 0.980 0 0.980 3.41 0.946 0.000 0.946 4.21 0.929 0.000 0.929 2.10 0.847 0 0.847 3.30 0.696 
0.6 1.92 0.988 0 0.988 2.98 0.971 0.000 0.971 3.63 0.953 0.000 0.953 1.87 0.905 0 0.905 2.91 0.803 
0.7 1.76 0.993 0 0.993 2.69 0.985 0.000 0.985 3.27 0.977 0.000 0.977 1.72 0.936 0 0.936 2.64 0.872 
0.8 1.65 0.995 0 0.995 2.49 0.989 0.000 0.989 3.00 0.983 0.000 0.983 1.62 0.954 0 0.954 2.44 0.907 
0.9 1.57 0.996 0 0.996 2.33 0.992 0.000 0.992 2.81 0.994 0.000 0.994 1.55 0.963 0 0.963 2.30 0.933 
1.0 1.51 0.996 0 0.996 2.22 0.994 0.000 0.994 2.66 0.989 0.000 0.989 1.49 0.971 0 0.971 2.19 0.944 
1.1 1.47 0.997 0 0.997 2.13 0.994 0.000 0.994 2.54 0.994 0.000 0.994 1.45 0.975 0 0.975 2.11 0.954 
1.2 1.44 0.998 0 0.998 2.06 0.996 0.000 0.996 2.45 0.993 0.000 0.993 1.42 0.980 0 0.980 2.04 0.962 
1.3 1.42 0.998 0 0.998 2.01 0.996 0.000 0.996 2.37 0.994 0.000 0.994 1.40 0.981 0 0.981 1.99 0.965 
1.4 1.40 0.997 0 0.997 1.96 0.996 0.000 0.996 2.31 0.994 0.000 0.994 1.38 0.983 0 0.983 1.95 0.970 
1.5 1.38 0.998 0 0.998 1.93 0.996 0.000 0.996 2.26 0.995 0.000 0.995 1.37 0.985 0 0.985 1.91 0.973 
1.6 1.38 0.999 0 0.999 1.90 0.997 0.000 0.997 2.22 0.996 0.000 0.996 1.36 0.986 0 0.986 1.88 0.977 
1.7 1.37 0.999 0 0.999 1.87 0.998 0.000 0.998 2.19 0.997 0.000 0.997 1.36 0.987 0 0.987 1.86 0.978 
1.8 1.36 0.999 0 0.999 1.85 0.997 0.000 0.997 2.16 0.998 0.000 0.998 1.35 0.988 0 0.988 1.84 0.979 
1.9 1.36 0.998 0 0.998 1.83 0.998 0.000 0.998 2.13 0.997 0.000 0.997 1.35 0.987 0 0.987 1.82 0.982 
2.0 1.35 0.998 0 0.998 1.82 0.998 0.000 0.998 2.11 0.998 0.000 0.998 1.34 0.990 0 0.990 1.81 0.982 

 

COVC = 0.12 COVC = 0.20 
μC/μD = 4.5 μC/μD = 6.5 μC/μD = 2.5 μC/μD = 4.5 μC/μD = 6.5 

COVD 
LC

F

P
P

 EE

F
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P

 β HD

F

P
P
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F
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P

 EE

F
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P
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F
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P

 LC

F

P
P

 EE

F

P
P

 β HD

F

P
P

 LC

F
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P

 EE
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P
P

 β HD

F

P
P
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F

P
P

 EE

F
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0.2       3.27 0.002 0.004 0.006         
0.3       2.65 0.176 0.000 0.177 4.31 0.000 0.000 0.000     
0.4 0.000 0.482     2.24 0.470 0.000 0.470 3.60 0.167 0.000 0.167 4.46 0.049 0.000 0.049 
0.5 0.000 0.696 4.04 0.478 0.000 0.478 1.97 0.670 0.000 0.670 3.12 0.409 0.000 0.409 3.83 0.264 0.000 0.264 
0.6 0.000 0.803 3.56 0.733 0.000 0.733 1.78 0.779 0.000 0.779 2.79 0.582 0.000 0.582 3.41 0.471 0.000 0.471 
0.7 0.000 0.872 3.21 0.808 0.000 0.808 1.66 0.846 0.000 0.846 2.54 0.699 0.000 0.699 3.10 0.594 0.000 0.594 
0.8 0.000 0.907 2.96 0.858 0.000 0.858 1.57 0.884 0.000 0.884 2.37 0.777 0.000 0.777 2.88 0.695 0.000 0.695 
0.9 0.000 0.933 2.77 0.905 0.000 0.905 1.50 0.907 0.000 0.907 2.24 0.825 0.000 0.825 2.70 0.771 0.000 0.771 
1.0 0.000 0.944 2.63 0.922 0.000 0.922 1.45 0.926 0.000 0.926 2.14 0.859 0.000 0.859 2.57 0.813 0.000 0.813 
1.1 0.000 0.954 2.52 0.936 0.000 0.936 1.42 0.938 0.000 0.938 2.06 0.883 0.000 0.883 2.47 0.841 0.000 0.841 
1.2 0.000 0.962 2.43 0.946 0.000 0.946 1.39 0.945 0.000 0.945 2.00 0.903 0.000 0.903 2.38 0.868 0.000 0.868 
1.3 0.000 0.965 2.36 0.955 0.000 0.955 1.37 0.951 0.000 0.951 1.95 0.912 0.000 0.912 2.32 0.887 0.000 0.887 
1.4 0.000 0.970 2.30 0.961 0.000 0.961 1.36 0.957 0.000 0.957 1.91 0.924 0.000 0.924 2.26 0.898 0.000 0.898 
1.5 0.000 0.973 2.25 0.967 0.000 0.967 1.35 0.961 0.000 0.961 1.88 0.933 0.000 0.933 2.21 0.911 0.000 0.911 
1.6 0.000 0.977 2.21 0.967 0.000 0.967 1.34 0.964 0.000 0.964 1.85 0.938 0.000 0.938 2.17 0.921 0.000 0.921 
1.7 0.000 0.978 2.17 0.973 0.000 0.973 1.33 0.966 0.000 0.966 1.83 0.945 0.000 0.945 2.14 0.924 0.000 0.924 
1.8 0.000 0.979 2.14 0.975 0.000 0.975 1.33 0.968 0.000 0.968 1.81 0.946 0.000 0.946 2.11 0.932 0.000 0.932 
1.9 0.000 0.982 2.12 0.977 0.000 0.977 1.33 0.970 0.000 0.970 1.80 0.950 0.000 0.950 2.09 0.937 0.000 0.937 
2.0 1.69 0.997 2.22 0.997 2.51 0.996 1.32 0.971 0.000 0.971 1.78 0.954 0.000 0.954 2.07 0.939 0.000 0.939 

 
In summary, the above change patterns are shown in Table 3: 
 

Table 3. Relationship among design parameters. 
Observation COVD COVC β PF FS PEE/PF 

1 increased fixed decreased increased Fixed increased 
2 increased fixed kept kept increased slightly increased 
3 fixed increased kept kept increased decreased 
4 fixed decreased increased decreased Fixed increased 

Note: shaded cells contain the changing parameters, un-shaded cells are the influenced outcomes. 
 
3.3. Case Study 3: Bridge Bent subjected to Earthquake 
 
In this example, the seismic reliability of a single-RC column bridge bent (Figure 6) is examined. Flexural 
failure of column is assumed as a critical failure mode in the single-column bent design, and designed flexural 
strength in the example (NCHRP 489: Ghosn et al. 2003) is determined following NEHRP design spectra of 
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four sites  with different seismic hazards in the U.S. 

• Demand: simulated model; Capacity: lognormal flexural resistance (fixed COV = 0.17). 
• The bridge is classified as an essential structure, so Response Modification Factor (Rm)= 2.0 and design 

earthquake = 2500-year return period ground motion are chosen. 
• Parameters of composed demand and capacity model are provided in Table 4. Other statistical 

parameters used to evaluate flexural demand and capacity can be found in NCHRP 489. All 
probabilistic parameters are modeled to follow lognormal in this study.  

 
Table 4.  Statistical parameter of flexural demand and capacity for bridge bent 

Demand (simulated) Capacity  (lognormal) Site Mean [kips] COV Mean [kips] COV μC/μD 

San Francisco 9881 1.01 30465 0.17 3.08 
Seattle 6045 1.21 17029 0.17 2.82 
New York 1097 3.41 4566 0.17 4.16 
Memphis 3311 2.44 13174 0.17 3.98 

 
Following observations are made in this case study. (Figure 7) 

1) Due to large COVD of flexural demand, PHD/PF’s have the values near 1.0. This COV comes from the 
large uncertain property of earthquake hazard intensity (PGA). Especially, since COV of conventional 
RC column’s strength has been recognized as 0.13~0.17 (Ghosn et al. 2003), PHD/PF is expected to be 
greater than 0.9. 

2) Reflecting COVD and μC/μD for each site’s hazard demand model, SF and Seattle’s demand models 
seem close to EVT2 and NYC and Memphis’s close to lognormal. 
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Figure 6. Bridge bent in example 
(Ghosn et al. 2003) 

Figure 7. PHD/PF of bridge bent subjected to earthquake  
for COVC=0.17 overlapped with Fig. 4(b) and 5(b) 

 
4. CONCLUSIONS 
 
In this paper, we examined the composition of POF and tried to quantify the portion of POF due to EE (high 
demand and low capacity. Defining EE by severity-based threshold or as subsets of failure events is provided 
and quantitative relationship between the two is developed. Through case study examples it is shown that a 
dominant portion of failure probability is attributed to EEs with large uncertainty in the demand model. The 
formulated criterion has three meanings: 1) this helps to represent the tail property of demand and capacity in 
POF decomposition; 2) it is directly linked severity-based EE concept to POF based EE concept; 3) it offers an 
easy measure of EE by simply looking at the two tail probabilities. 
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