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ABSTRACT : 

This paper studies the stability of the central difference method (CDM) for real-time substructure test
considering specimen mass. To obtain correct reaction inertia force, an explicit acceleration formulation is 
assumed for the CDM. The analytical work shows that the stability of the algorithm decreases with increasing 
specimen mass if the experimental substructure is a pure mass. The algorithm becomes unstable whatever the
time integration interval, i.e. unconditionally unstable, when the mass of specimen equal or greater than that of
its numerical counterpart. For the case of dynamic specimen, the algorithm is unconditionally unstable when 
there is no damping in the whole test structure; a damping will make the algorithm stable conditionally. Part of 
the analytical results is validated by an actual test. 
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1. INTRODUCTION  

Real-time substructure testing (RSTing) is a hybrid approach to evaluate dynamic performance of structures. As 
a core element of the analytical part of RSTing, numerical integration plays a key role in a successful test. Most
numerical integration algorithms in RSTing (Williams et al., 2001) are originated from the pseudo-dynamic 
testing (PDT). Many integration methods popular in PDT are explicit only for displacement. When an explicit 
velocity is required for damping specimen in RSTs, some extra formulation has to be assumed. This assumption 
very possibly does not conform to the original velocity formulation and this may change the numerical behavior
of the integration algorithm. For the CDM in RSTing with damping specimen, Wu et al. (2005) showed that the 
stability decreases with increasing damping of the experimental substructure, contrasting constant stability limit
of standard CDM. Similar problem may exist for implicit algorithm implemented in a RST. Wu et al. (2007)
found that Newmark average acceleration method may lose the unconditional stability for damping specimen. 

For a dynamic experimental substructure, the loading fashion should be explicitly and properly specified to
obtain correct reaction of the substructures due to its inertia as well as stiffness and damping. This may change 
the numerical behavior of integration algorithms which normally do not include any explicit expressions for
acceleration. Nguyen and Dorka (2006) showed that the Newmark average acceleration method became 
conditionally stable when the loading commands for the dynamic substructure were send off as a linear ramp 
function of time. Although there have been successful applications of explicit algorithms to inertia specimen
and some discussions on stability related to time delay (Horiuchi and Konno, 2001) or coupling between 
numerical and experimental substructures (Bursi et al, 2007)), the impact of specimen mass on the stability of a 
specific integration method has not been explored. This paper will focus on the stability issue of the CDM 
arising in its implementation to RSTing with dynamic experimental substructure. 

2. FORMULATION OF THE CDM FOR RST CONSIDERIING SPECIMEN MASS 

In an RST, the acceleration-dependent force and velocity-dependent force exhibited by the specimen are 
introduced into the measured reaction force together with the static restoring force when the specimen is a dyn-
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amic substructure. Therefore, the time-discretized equations of motion of the numerical substructure at the ith 
time step in an RST can be expressed in a more general and precise form as  

 N N, N N, N N, E C, C, C,( , , )i i i i i i i+ + + =M a C v K d R a v d F                     (2.1)

and, when the CDM is employed, the velocity and acceleration are approximated by 
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where M, C and K are the mass, damper and stiffness matrices of the numerical substructure respectively; R is 
the reaction force; a, v and d are acceleration, velocity and displacement vectors; F is external exciting on the 
numerical substructure; Δt is the integration time interval; subscripts N, E and C denote numerical substructure,
experimental substructure and coupling degree-of-freedom of numerical and experimental substructures, 
respectively. Substituting Equations (2.2) and (2.3) into (2.1) gives 
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To obtain accurate dynamic reaction force, the velocity and acceleration on the coupling degree-of-freedom at 
the (i+1)th step, which denoted by vc,i+1 and ac,i+1 respectively, have to be determined and imposed onto the 
specimen together with dc,i+1. This just can not be realized through Equations (2.2) and (2.3), as the
displacement at the (i+2)th step is not yet available. For an actuator controlled in a traditional displacement 
mode, the achievement of the explicit velocity or acceleration target is dependent on how the displacement
command is issued with respect with time. To this end, we assume a constant acceleration in the time interval
from ti to ti+1, resulted in by a displacement command profile as a quadratic function in time: 

 ( ) ( )2
C, 1 C, C, C, 1

1
2i i i i i it t t t t+ += + − + −d d ν a( )                  (2.5)

in which the hat mark denotes target for loading. Note that, for seismic tests, the commands should include the
ground motion to guarantee an absolute acceleration input to the dynamic specimen and hence obtain correctly
reaction force due to inertia. Substituting Equation (2.2) into the above equation and letting t=ti+1 entail 
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By differentiating Equation (2.5) and utilizing Equations (2.2) and (2.6), we obtain 

                           C, 1 C, C, 1
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Comparing Equations (2.7) and (2.6) with (2.2) and (2.3), we see that the velocity and acceleration at the 
coupling degree-of freedom of the experimental substructure is obviously no longer consistent to those of
numerical substructure determined by the standard CDM. This raises the issue of possible change of numerical
behavior, especially the stability, of the modified CDM over the standard one, which will be discussed next. 
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3. STABILITY ANALYSIS 

 

 

 

 

 

Figure 1 Computation schematic of structure in 
RST with pure inertia specimen 

Figure 2 Computation schematic of structure in RST 
with dynamic specimen 

We restrain our discussion within linear systems and the numerical substructure is of single-degree-of-freedom 
(SDOF). Two cases are considered: one is with a specimen of pure mass as shown Figure 1, and the other with
a SDOF dynamic specimen as shown Figure 2. 

3.1. Pure Inertia Specimen 

When the experimental substructure is just an inertia mass, its reaction force at the ith step is easily obtained as

 E,i E C,iR M a=                   (3.1)

where C,ia  is determined by Equation (2.6). Substituting Equation (3.1) into (2.4) yields 
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Based on the above equation, the displacement responses of free vibration between two adjacent time steps can
be related in a recursive form as 

 1i i+ =Y AY                (3.3)

where [ ]T1 1 1i i i id d d+ + −=Y , 
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ξN=CN/(2MNω), γm=ME/MN. The matrix A is usually called amplification matrix and its eigenvalues determine
the numerical behavior of an integration algorithm. In particular, the amplification matrix defines the stability
condition of an integration algorithm through 

 ( ) 1ρ ≤A                 (3.4)

Where ρ(A) is the spectral radius of A, which is defined as ρ(A)=max(λi), and λi are the eigenvalues of A. The 
characteristic equation of A can be obtained as 

 ( ) ( ) ( )3 2 2
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Figure 3 Spectral radius of CDM for RST with pure inertia specimen 
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Figure 4 Free vibration responses with pure inertia specimen 

We define a stability limit as the maximum of the Ωs values such that ρ(A)≤1 for any Ω∈(0, Ωs). Letting [Ω]
denote the stability limit, one may obtain the stability limit of the modified CDM for pure mass specimen as
(Yang, 2007) 

 [ ] m

m

1
2

1+
γ
γ

−
Ω =                   (3.6)

The above equation indicates that (i) the stability limit only exists when γm<1 (the non-existence of stability 
limit is called unconditionally unstable in this paper); (ii) the stability limit decreases with increasing γm; (iii) 
the stability limit has no relationship with damping from numerical substructure. The spectral radius ρ(A)
against Ω is plotted in Figure 3a with ξN=0 and different γm values. The stability limit values obtained from 
Figure 3a is identical to those calculated using Equation (3.6). Figure 3b shows the diagrams of spectral radius
ρ(A) against Ω with γm=0.5 and different ξN values. The independence of stability limit upon ξN is easily seen 
and is consistent with the observation from Equation (3.6). 

The simulated displacement responses of free vibration with various Ω values are shown in Figure 4 where 
MN=300kg, γm=0.8, ω=2π, ξN=0.2 and initial condition is d0=1cm and v0=0. The corresponding stability limit is 
0.67 obtained with Equation (3.6). When Ω>0.67, the unstable response is observed in Figure 4. It is also seen
that the simulated result approaches exact one with reducing Ω similar to standard CDM. 

3.2. Dynamic specimen 

For the RST of a structure as shown Figure 2 subject to seismic excitation, the reaction force RE(t) of the 
experimental substructure is only related to the acceleration Ca (not Cd or Cv ) at the coupling 
degree-of-freedom through following equations. 
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( )E, E E, E E,( ) ( ) ( )i i iR t C v t K d t= − +                               (3.7)

 E E, E E, E E, E C, g,( ) ( ) ( ) ( )i i i i iM a t C v t K d t M a a+ + = − +                (3.8)

in which aE, vE and dE are the acceleration, velocity and displacement of experimental substructure relative to
the numerical substructure, respectively; ag is the ground acceleration; t∈[ti-1, ti]. Free vibration response of the 
experimental substructure is obtained using Duhamel’s integral on Equation (3.8). Accordingly, the analytical
solution of reaction force is derived. Its substitution together with Equation (2.6) into Equation (2.4) gives 

 N, 1 1 N, 2 N, 1 3 N, 2 4 E, 5 E,i i i i i id c d c d c d c d c v t+ − −= + + + + Δ                       (3.9)

in which cj’s are constants related to structural parameters and time integration interval; their expressions can be
found in Yang (2007). Letting 

T

1 N, 1 N, N, 1 E, E,i i i i i id d d d v t+ + −⎡ ⎤= Δ⎣ ⎦Y                          (3.10)

one may easily get the corresponding amplification matrix A.  

It is difficult to obtain the analytical expression of spectral radius of the matrix A due to mathematical 
complexity. Therefore, the numerical analyses were carried out to investigate the spectral characteristics. Figure 
5a shows the results of undamped cases with frequency ratio γω equal to 1, where γω=ωE/ωN, E E E/K Mω = , 

N N N/K Mω = ; the horizontal coordinate is defined as Ω=ωNΔt. It is seen that the spectral radius is always 
greater than unity, indicating unstable response, however small the mass ratio and Ω are. This means that the 
CMD is unconditional unstable for a dynamic specimen if there is no damping associated in the test structure. 
This contrasts the conditional stability of the case with pure mass specimen and the mass ratio lower than 1.
Nonetheless the instability in the case of dynamic specimen is not that serious for small mass ratio and Ω since 
the spectral radius is very close to unity as shown in Figure 5a, if only the testing duration is not too long. It is 
also seen in Figure 5a that the instability is improved with reduced γm, as the spectral radius becomes closer to 
1. The elimination of unconditional instability problem can be achieved by adding a damping to the structure. 
This is illustrated in Figure 5b where damping ratios of experimental and numerical substructures are both 5%,
and γω=1. The damping ratio here are defined as ξE=CE/(2MEωE), and ξN=CN/(2MNωN). Figure 6 shows the 
simulated and exact displacement responses of the free vibrations with  ξE=ξN＝0.05, γm=γω=1. The initial 
conditions are: dN0=1cm, dE0=-1cm, vN0=vE0=0. Different Ω’s are considered in the simulation. The stability 
limit of this case is 0.44 from Figure 5b. It is observed from Figure 6 that the response is unstable when Ω= 
0.45, which verifies the result of spectral analysis. Although the stable responses of RST are attained for smaller
Ω’s, the good agreement with the exact solution is seen only for an Ω as small as 0.05. 
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Figure 5 Spectral radius of CDM for RST with dynamic specimen 
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Figure 6 Free vibration responses with dynamic specimen 

4. NUMERICAL SIMULATION OF RST WITH SHAKING TABLE  

In Sections 2 and 3, the dynamics of physical loading system is not considered in order to emphasize the 
numerical behaviors of the algorithm itself. A shaking table is used in this section as a transfer system of the 
RST with dynamic specimen, and the stability performance will be investigated through some numerical 
simulations, in which the linear model of the Rice university shaking table developed by Conte et al. (2000) is 
adopted herein. All the parameters of the shaking table are the same as in Conte et al. (2000) except the control 
gains specified in this paper. The excitation is the El Centro (NS, 1940) earthquake record. 

4.1. Pure Inertia Specimen 

The parameters of the numerical substructure and experiment substructures for the numerical simulations are: 
MN=300kg, ω=2π, KN=(ME+MN)ω2, CN=0, ME=MN, and KE=CE=0. The period of the whole structure is 1 
second. The PID control gains are KP=0.394×5V/cm, KI=0, KD=0.085V·cm, and the feed-forward and 
differential pressure control gains are: Kff=0.012V·cm and Kdp=-2.15×10-7, respectively. The numerical 
simulation results with different mass ratios and the exact solution of the displacement responses are shown in 
Figure 7. The exact solution is calculated by using Lsim command in Matlab with the integration time interval 
of 0.01s. It is seen that the response becomes unstable when γm =1.003. This is consistent with the results of 
theoretic analysis in Section 3. It is also seen that the response approaches the exact solution with smaller γm. 

4.2. Dynamic Specimen 

The parameters of the numerical substructure, as shown in Figure 2, are MN=500kg, ωN=2π, KN=MNωN
 2, and 

ξN=0.05. The parameters of the experiment substructure are identical to the numerical substructure, i.e.
γm=γk=γc=1. The PID control gains of the shake table controller are KP=0.394×5V/cm, KI=0, KD=0.0725 V·cm, 
and the feed-forward and differential pressure control gains are Kff=0.0125 V·cm and Kdp=-2×10-7, respectively. 
According the analysis of Section 3, the stability limit is equal to 0.44 in this case. The displacement responses 
of the numerical substructure with different Ω values are shown in Figure 8. The unstable response is clearly 
seen when Ω=0.471>[Ω]=0.44. The better result is obtained as expected with smaller Ω. 
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Figure 7 Numerical Simulation result of RST using 

shaking table (pure inertia specimen) 
Figure 8 Numerical Simulation result of RST using 

shaking table (dynamic specimen) 

5. VALIDATION TEST 

A validation test was carried out at the Mechanical and Structural Testing Center of the Harbin Institute
of Technology. The computation schematic of the whole test structure is shown in Figure 1. The experimental 
substructure was a pure mass made of cast iron with ME=116kg. A photograph of the experimental substructure 
installed on the MTS servo-hydraulic actuator is shown in Figure 9. The parameters of the numerical 
substructure are ωN=2πs-1, KN = MNωN 2 and CN=0. The integration time interval was 0.01. Figures 10-12 show 
the displacement commands and responses of free vibration with different mass ratios. The initial conditions are 
d0=0, v0=3.14cm/s. The displacement responses tracked the commands very well in all these cases as shown in 
Figure 10-12. The stable result was obtained with γm=0.1 and the decaying response is observed in Figure 10, 
probably due to the friction force between the guiding columns and the iron mass. With this friction force, the
response remained stable with γm =1.01>1 as seen in Figure 11. Further increasing γm by reducing the mass of 
numerical substructure resulted in an unstable tendency of response as seen in Figure 12. The test was 
terminated before it went violently. Although the test results were not exactly the same as predicted by the
analytical work in the previous sections, the influence of the specimen mass on the stability of RSTing with the 
CDM has been confirmed. 
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Figure 9 Photograph of test setup for RST 
 

Figure 10 Test result with γm=0.1 
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Figure 11 Test result with γm=1.01 Figure 12 Test result with γm=1.3 

6. CONCLUSION  
 
The CDM is modified with an explicit acceleration formulation to obtain correct reaction force of dynamic
specimen in a RST. The analytical work, numerical simulation of the RST with a shaking table and actual test
have all shown that the stability of the algorithm decreases with increasing mass ratio of experimental over
numerical substructures. 
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