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ABSTRACT: 

Two novel implementation methods of implicit integration procedures for hybrid simulation are presented. The 
first solves the equation of motion using a fully implicit iterative formulation. The experimental restoring force 
for each iterative displacement is estimated from curve-fitting of recent force-displacement measurements, 
avoiding physical iterations on the experimental substructures. For steps that do not converge, the procedure 
defaults to an explicit formulation. The second integration procedure is a modified operator-splitting integration 
scheme with two enhancements: a new formulation for the prediction phase with improved accuracy, and the 
use of an estimated tangent stiffness matrix of the experimental substructure to improve the accuracy of the 
correction step. A procedure for estimating the experimental tangent stiffness matrix is presented; it is updated 
only in the steps with significant displacement increments, and remains unchanged otherwise to ensure that the 
quality of measured data is reliable. Both integration procedures have been successfully implemented 
experimentally and shown to improve the stability and accuracy of hybrid simulations. Numerical and 
experimental simulations demonstrate the effectiveness of these integration schemes, especially in utilization of 
longer time steps, prevention of excitation of higher modes, and testing of stiff and highly nonlinear systems. 
Improvements in accuracy are demonstrated by measuring the energy balance in the equation of motion. 
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1. INTRODUCTION 

The path-dependent behavior of experimental specimens does not allow for direct implementations of iterative 
implicit integration procedures in hybrid simulations. As a result, explicit procedures have been more popular 
since in these methods, the displacement command for the actuator is directly computed at the beginning of 
each step. However these methods are conditionally stable and have stringent time step requirements for stiff 
systems, or systems with high-frequency modes. Extensive research has been dedicated to the development of 
improved integration algorithms that can be easily applied to hybrid simulations. 

A number of improved integration methods utilize implicit formulations by introducing feedback loops 
involving single-degree-of-freedom (SDF) experimental substructures (Thewalt and Mahin 1987; Shing et al. 
1991; Shing et al. 2006). These procedures have onerous communication requirements between experimental 
and numerical substructures, and require specialized control strategies to avoid unwanted displacement reversals 
during iterations on experimental substructures. In order to address these issues, other integration methods have 
been introduced that apply implicit iterations only in numerical substructure (Schneider and Roeder 1994; 
Ghaboussi et al. 2006), or use the initial elastic stiffness matrix of the experimental substructure to approximate 
its behavior (Nakashima et al. 1990; Zhang et al. 2005; Chang and Sung 2006; Wu et al. 2006). The initial 
stiffness approximation is reasonable for mildly nonlinear systems, when an experimental tangent stiffness 
matrix may be difficult to estimate. Estimation of tangent stiffness of the experimental substructures has also 
been attempted in hybrid simulations. These stiffness matrices have been used for error computations (Thewalt 



and Roman 1994), delay compensation (Carrion and Spencer 2006) and establishing an instantaneous force-
displacement relation for SDF experimental substructures (Pan et al. 2005).  

In this paper, new integration procedures are proposed for displacement-controlled hybrid simulations. In one 
method, recent measurements are used to estimate restoring forces in an iterative scheme to satisfy the implicit 
formulation of the equation of motion. In the other method, an experimental tangent stiffness matrix is updated 
in each integration step using measurements, and then used in the operator-splitting solution procedure to 
improve the correction step. The effectiveness of these methods is demonstrated through hybrid simulations, 
including a two-degree-of-freedom experimental substructure and a series of numerical simulations. 

2. HYBRID SIMULATION 

In a hybrid simulation, the equation of motion of the combined numerical and experimental structural model can 
be expressed as: 

 t
gu+ −Ma + Cv + Kd r = M ι&&  (2.1) 

in which M , C  and K  are mass, damping, and stiffness matrix of the numerical substructure, tM  is the total 
mass matrix (including experimental mass) of the structural model, ι  is the influence vector, d , v , and a  are 
displacement, velocity and acceleration vectors, respectively; gu&&  is the input ground acceleration and r  is the 
restoring force measured in the experimental substructures. The experimental restoring force vector may include 
strain-dependent, damping, or inertial forces. In this study, the experimental substructures are assumed to be 
mainly strain-dependent. 

3. INTEGRATION ALGORITHM 

The formulation of α-method by Hilber et al. (1977) used in the proposed integration algorithms is presented in 
this section. In the α-method, the time-discrete equation of motion and finite difference relations for 
determination of displacement and velocity at step n  are given by: 

 ( ) ( ) ( )t
1 1n n n n n n n g nu t tα α− −+ + + − + − = − + Δ⎡ ⎤⎣ ⎦Ma Cv Kd C v v K d d M ι&&  (3.1) 

 ( )2
1 1 11 2n n n n nt t β β− − −= + Δ + Δ − +⎡ ⎤⎣ ⎦d d v a a  (3.2) 

 ( )1 11n n n nt γ γ− −= + Δ − +⎡ ⎤⎣ ⎦v v a a  (3.3) 

in which tΔ  is the integration time step. This method provides numerical energy dissipation controllable by the 
parameter α . If the parameters are selected such that 1 3 0α− ≤ ≤ , ( )1 2 2γ α= − , and ( )21 4β α= − , an 
unconditionally stable, second-order accurate scheme results.  

In a hybrid simulation, Eq. (3.1) should be modified to include the restoring force vector from the experimental 
substructure: 
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where e t=M M - M  is the experimental mass matrix. In a fast pseudo-dynamic test, the inertial mass effect 
should be removed from the incremental feedback force vector in Eq. (3.4), so that the remainder will only 
include strain-dependent and damping effects. 

In a conventional operator-splitting integration method, the predictor displacement normally includes only the 
explicit portion of Eq. (3.2); that is, the predictor displacement is given by ( )2

1 1 11 2n n n nt t β− − −= + Δ + Δ −d d v a% . 



 
Figure 1 Estimation of force corresponding to the 

desired displacement using measurements. 

The corrector step will then add 2
ntβΔ a  to the predictor displacement to satisfy Eq. (3.2). In this study, Eq. (3.2) 

is used in explicit form by temporarily setting 0β =  to calculate the predictor displacement: 

 2
1 1 1

1
2n n n nt t− − −= + Δ + Δd d v a%  (3.5) 

The displacements applied on the experimental substructure are determined by a transformation to the actuator 
local coordinate system using l

n n=d Td% % , where T  is the displacement transformation matrix. The imposition of 
these displacements will result in the predictor measured force vector in actuator coordinate system, l

nr% . After 
the corrector step, the final (converged) displacement vector (which satisfies the implicit formulation) will be: 

 ( )2
1n n n ntβ −= + Δ −d d a a%  (3.6) 

Note that the correction term ( )2
1n ntβ −Δ −a a  is normally smaller than 2

ntβΔ a  used in the original operator-
splitting formulation, thus providing more accurate predictor displacements. In this study, two integration 
algorithms are introduced that apply an explicit displacement (Eq. (3.5)) in each step, and then update the states 
according to the change in the displacement vector given by Eq. (3.6). 

4. FULLY IMPLICIT INTEGRATION FOR HYBRID SIMULATION 

The major challenge in implementing implicit integration algorithms in a hybrid simulation is that iterative 
displacement reversals may result in unrecoverable damage to experimental specimens or erroneous energy 
dissipation. Therefore, it is not advisable to measure experimental restoring forces, i

nr , by physically imposing 
the iterative displacements. In the proposed fully implicit integration method, recent experimental 
measurements are used to capture the instantaneous behavior of experimental substructures and estimate forces 
corresponding to iterative displacements.  

The iterations are implemented numerically, without 
physical imposition of iterative displacements on the 
experimental substructures using the following 
procedure. First, the actuator command displacements 
are predicted using an explicit expression (Eq. (3.5)) to 
load the experimental substructures. Second, the 
displacements and forces measured through the load 
path are used in the iterative scheme to satisfy an 
implicit formulation, given by Eqs. (3.2)-(3.4). Next, 
force estimation procedure for iterative displacements is 
followed using the recent measurements. Second-order 
polynomials are fitted to both measured displacement 
and force histories in local actuator coordinates. In this 
procedure, the trial displacements are determined in 
actuator coordinate system in each iteration, but they are not physically imposed on the specimen. Instead, the 
fitted polynomials are used to estimate forces corresponding to each of the iterative displacements by using time 
stamps as a parameter relating force and displacement polynomials, as shown in Figure 1. The iterative 
procedure is repeated until a convergence criterion is satisfied, such as: 
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where ε  is the convergence tolerance for the normalized displacement increment, and superscripts denote the 
iteration number. 



As with most iterative integration schemes for non-linear systems, convergence cannot be guaranteed in each 
step, especially for a hybrid simulation that also involves experimental errors. The failed integration steps can 
be identified by detection of excessive time parameter variation, or convergence failure after maximum number 
of iterations. An alternate solution strategy is necessary for the simulation to continue in case the iterative 
solution scheme fails. Here, it is proposed to revert to an explicit procedure by selecting the displacement of Eq. 
(3.5) as the final solution for the step. The measured restoring force vector nr  is then directly used to determine 
acceleration and velocity vectors at step n  using Eq. (3.3) and: 
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where 

 ( ) e1
2
tα αΔ

= + + −A M C M  (4.3) 

If the initial stiffness matrix of the system is available, an operator-splitting method can also be utilized in the 
steps with failed implicit iterations to update the state vectors. 

5. OPERATOR-SPLITTING INTEGRATION WITH ESTIMATION OF EXPERIMENTAL 
STIFFNESS MATRIX 

The integration method proposed in this section takes advantage of measurements to update a condensed 
experimental tangent stiffness matrix. The tangent stiffness is then used in an operator-splitting method to 
improve its accuracy for testing nonlinear systems. Following a procedure similar to the previous section, the 
predictor displacement of Eq. (3.5) is applied on the experimental substructure and the restoring force is 
measured. In the corrector step, Eq. (3.6) is used to update the displacement vector. As a result of this change in 
displacement vector, force vector l

nr%  should also be updated in the corrector step: 

 ( ),l l l l l m
n n n n n= + −r r K d d%%  (5.1) 

where l
nd  is the displacement vector given by Eq. (3.6), ,l m

nd%  is the measured displacement vector, and l
nK  is the 

experimental stiffness matrix at step n , all expressed in the actuator coordinate system. Note that in a 
conventional operator-splitting method, l

nK  is simply the initial experimental stiffness matrix. By using the 
measured displacement vector ,l m

nd% , Eq. (5.1) not only updates the force vector due to displacement modification 
of Eq. (3.6), but also attempts to correct for actuator tracking errors. The corrected restoring force vector is then 
transformed to the global coordinate system using T l

n n=r T r , and used in the combination of Eqs. (3.3), (3.4), 
(3.6) and (5.1) to update the states. 

For use in this procedure, an experimental tangent stiffness matrix is estimated that satisfies the following 
incremental force-displacement relation at the thn  integration step: 

 l l l
n n nΔ = Δr K x  (5.2) 

where l
nΔr  and l

nΔx  are incremental force and displacement vectors of the experimental substructure in actuator 
local coordinate system, respectively, and l

nK  is the m m×  stiffness matrix of the experimental substructure, m  
being the number of actuators (and load cells). 

The conventional static test sequence for estimation of experimental stiffness matrix cannot be applied to online 
hybrid simulations. The required procedures should estimate the tangent stiffness only using 1m×  vectors of 
measured force and displacement data. In the proposed procedure, some information about the physical test 



system and experimental element configuration is first used to reduce the number of unknowns required to 
update the tangent stiffness matrix. 

A brief look at structural analysis problems reveals that the stiffness matrices of most structural elements consist 
of terms that are a combination of a few geometric and material properties. From a macroscopic standpoint, 
similar intrinsic parameters often exist that determine the resistance of a structure to loads imposed by actuators. 
For example, the lateral stiffness of a bracing system subjected to horizontal displacements provides a sufficient 
force-displacement relation, regardless of the configuration of individual elements. As another example, the 
entire N N×  stiffness matrix of an N -story shear building can be found from N  story stiffnesses. Hence, by 
considering only the key intrinsic parameters, the stiffness matrix l

nK  of the experimental substructure in the 
actuator coordinate system can often be expressed as: 

 l T
n p n p=K T P T  (5.3) 

where nP  is a diagonal p p×  matrix of essential stiffness parameters. The transformation matrix pT  transform 
displacements from the local actuator (substructure) coordinate system to an intrinsic (parameter) coordinate 
system with a presumed diagonal stiffness matrix nP . For the example of shear building, nP  is a diagonal matrix 
of story stiffness, and pT  simply transforms the displacements to story drifts.  

In order to calculate the terms of the diagonal stiffness matrix nP , the incremental displacement and force 
vectors should be transformed to the above-mentioned intrinsic coordinate system. For displacements, the 
transformation can be carried out through the same transformation matrix described above: 

 p l
n p nΔ = Δx T x  (5.4) 

in which l
nΔx  and p

nΔx  are the displacement increment vectors in actuator and intrinsic coordinate systems, 
respectively. The transformation of displacements from global to actuator coordinate system can be carried out 
using l

n nΔ = Δx T x . 

For statically determinate structures, the intrinsic forces can simply be found by equilibrium, and the 
transformation of local incremental force vector l

nΔr  to intrinsic coordinates ( p
nΔr ) is: 

 ( )Tp l
n p n

−Δ = Δr T r  (5.5) 

where the superscript ( )T−  represents a pseudo-inverse of the matrix transpose. If the experimental substructure 
is statically indeterminate, the calculation of forces in intrinsic coordinates requires the stiffness matrix of the 
system for a structural analysis. In this case, the structure should be analyzed to find local displacements from 
the measured local force vector, l

nΔr . The resulting local displacements can then be transformed to the intrinsic 
coordinate system using Eq. (5.4). The intrinsic forces will be the forces corresponding to the intrinsic 
displacement vector using diagonal stiffness matrix nP : 

 ( ) 1p l l
n n p n n

−
Δ = Δr P T K r  (5.6) 

Note that to omit the iterative procedure involved in the use of the above equation, it can be approximately 
replaced by ( ) 1

1 1
p l l

n n p n n

−

− −Δ = Δr P T K r , updated once at the beginning of each integration step. After determination 
of forces and displacements in the intrinsic coordinate system, each diagonal element of the updated parameter 
matrix can be found by dividing the corresponding elements of force vector by the displacement vector. Put in 
matrix form, the expression will be: 

 ( ) ( )1
diag diagp p

n n n

−
= Δ ΔP x r  (5.7) 



The global stiffness matrix of the experimental substructures can then be found using: 

 T l
n n=K T K T  (5.8) 

The fidelity of displacement and force measurements used in Eq. (5.7) is essential to the accuracy of the 
estimated stiffness matrix. Hence, it is important to minimize the amount of noise in the measured force and 
displacement vectors. For this purpose, it is suggested to update the stiffness matrix only in integration steps 
with displacement increments sufficiently larger than the noise level. For example, the incremental displacement 
vector should satisfy: 

 l
n δ

∞
Δ >x  (5.9) 

where l
n ∞

Δx  denotes the largest element of the absolute incremental displacement vector, and δ  is 

displacement increment threshold. The displacement threshold δ  should be greater than the measurement noise 
level, but small enough to capture steps with significant displacement increments. Pretest simulations with zero 
input excitation can be used to determine the root-mean-square (RMS) of the noise signal in displacement and 
force measurements. Recommended value of ε  is the greater of: 10 times the RMS of displacement noise or a 
value that results in a force (using initial stiffness) 10 times greater than the RMS of force noise. 

6. EXPERIMENTAL VERIFICATIONS 

The two-story structure shown in Figure 2 is considered for the experimental verification of the proposed 
integration methods. The entire stiffness of the hybrid model is represented by a two-degree-of-freedom 
experimental substructure. Damping is numerically modeled to be 5% of critical in the first mode. The response 
of the structure subjected to the 1978 Tabas earthquake (a near-fault record with a peak ground acceleration of 
0.85g) is simulated at the real-time event scale with integration time step of 10/1024 seconds. 
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Figure 2 Two-degree-of-freedom structure, corresponding laboratory setup for experimental substructure column, and 

stiffness components in the intrinsic coordinate system. 

Based on the measured initial stiffness of the experimental substructure, a mass matrix is selected to attain 
natural periods of 0.50 and 0.13 seconds. For comparison purposes, and to keep the specimens in linear range, 
two simulations with 2.5% excitation amplitude scale have been carried out using an explicit method and the 
proposed fully implicit integration procedure. As illustrated in Figure 3, although the simulation is within the 
stability limit of the explicit integration procedure, it becomes unstable due to the presence of experimental 
errors. The proposed integration method with implicit or explicit steps (with 68.8% successful implicit steps), 
however, remains stable and accurate throughout the simulation. The effectiveness of this test procedure has 
also been verified in nonlinear systems (Mosqueda and Ahmadizadeh 2007). 

In another simulation, the mass matrix is modified to obtain periods of 0.6 and 0.15 seconds, and the excitation 
amplitude scale is increased to 35% to increase the internal forces and result in a nonlinear response. The 
simulation results using operator-splitting method with experimental tangent stiffness are shown in Figure 4. As 
illustrated, the response is nonlinear, and residual drifts of 14 and 28 millimeters can be observed in the first and 
second stories, respectively. In this experimental simulation, the stiffness matrix was updated in 64.0% of the 
integration steps (85.3% for the period of significant response between 5 and 30 seconds). In other steps, the 
displacement norm was less than the noise threshold (0.1mm). The terms of the experimental stiffness matrix 
through the simulation are shown in Figure 4(b). The estimated stiffness matrix appears to have a fair amount of 
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Figure 5 Energy histories computed through 

the hybrid simulation. 

noise, which can be reduced by improved filtering of the measurements. Even so, this estimate is sufficient to 
improve the accuracy compared to the conventional operator-splitting approach. 
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Figure 3 Displacement history of linear experimental simulations of two-degree-of-freedom system – (a) explicit central 

difference, and (b) combined implicit or explicit integration. 
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Figure 4 (a) Displacement history of a nonlinear simulation with 35% Tabas earthquake, and (b) stiffness matrix elements 

during the simulation. 

The energy balance of the system is well maintained 
throughout the simulation, as shown in Figure 5. The sum of 
analytical and experimental energies shows an excellent 
agreement with the input energy. Note that the simulation 
model does not have any numerical stiffness and numerical 
strain energy is zero throughout the simulation. The final 
energy balance error is less than 0.02% of input energy, which 
is very small. A similar experiment using a constant initial 
stiffness matrix for experimental substructure (conventional 
operator-splitting method), shows about 0.45% energy error at 
the end of simulation. This difference is small for this test 
structure, due to the fact that the amount of yielding is limited 
in the present experimental setup by the available actuator stroke. This improvement has been observed to be 
larger in simulations with highly nonlinear experimental substructures (Ahmadizadeh and Mosqueda 2008). 

7. CONCLUSIONS 

Two new integration procedures have been proposed based on the use of measurements in iterations and 
estimation of tangent stiffness matrix of the experimental substructure during hybrid simulations. An iterative 
integration method was proposed that captures the instantaneous behavior of the experimental substructures by 
using the most recent measurements to satisfy an implicit formulation in a majority of the integration steps. As 
convergence cannot be guaranteed in nonlinear hybrid simulations with experimental errors, in cases where 
accurate estimation of forces corresponding to iterative displacements is not possible and convergence fails, the 
procedure reverts to an explicit or operator-splitting scheme to ensure completion of the integration step. It was 
shown that this integration method is able to eliminate spurious excitation of high-frequency modes and remain 
stable using longer time steps compared to explicit methods.  



In another integration procedure, the tangent stiffness matrix of the experimental substructure is updated in each 
integration step following the operator-splitting scheme. In this approach, necessary parameters are first 
identified and updated during the simulation using the incremental force and displacement vectors. Only 
significant force-displacement pairs are used to update these parameters; steps with small displacement 
increments are ignored. The estimated stiffness parameters can then be used to determine reduced experimental 
stiffness matrix through a simple coordinate system transformation. It was demonstrated that the use of the 
updated stiffness matrix improves the accuracy of the simulation by reducing the overall energy balance errors. 

By using the recent series of measurements in the force and stiffness estimation procedure, the proposed 
integration methods better capture the actual behavior of experimental setup. In addition, these procedures 
reduce the required communications between numerical and experimental subsystems, as the exchange of 
command displacements and acquisition of measurements occur only once within each integration step. These 
features make the proposed integration algorithms appealing for real-time testing stiff or highly nonlinear 
systems or applications to geographically distributed experiments. 
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