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ABSTRACT  
Literature shows that axial behavior of buried pipeline due to vibration or dynamic loading is an important 
factor for design procedure. Recently, many researchers are focused to improve design criteria for this type of 
structure in different geotechnical conditions and construction methods. Static and dynamic stiffness, damping 
coefficient, mass association of surrounding pipe material in many cases characterized the dynamic loading 
system in analytical model of buried pipelines. Therefore, in this paper an analytical model based on the 
laboratory testing method is presented to investigation some important factors which effects on buried pipeline 
structure. Based on the statistical interpretation for the laboratory testing results the actual data is applied to the 
presented model for understanding the sensitivity of the parameters which involves in pipeline structures. The 
concept of analytical model is based on the dynamic structures and mechanical vibration theory with using the 
Fourier transfer in time and frequency domain. The Winkler spring is also applied to provide facility for 
considering the linear and nonlinear behavior of surrounding material in the model of buried pipeline. The 
available loading and measurement equipments such as Loadcell, Actuator, and Computer network are applied 
with Servo-Hydraulic system in the laboratory investigation. In the laboratory work, the pipeline with a suitable 
scale is simulated with a box which the pipe is laid between the several compact layers of nominated soil. The 
reflection of the dynamic wave in the both end- boundaries of pipe was controlled through several plates which 
submerged in viscous fluid. The sensitivity of soil material parameters , depth of buried pipe, pipe diameter, 
pipe material , soil water content, soil compaction factor, amplitude and frequency of harmonic vibration and 
etc., are investigate in this research work. The study shows that: Stiffness between pipe and surrounding 
material in dynamic condition is less than static. Force-displacement relationship between pipe and soil in axial 
direction of pipe is nonlinear. Investigation shows that increasing the frequency of harmonic vibration decreases 
amplitude of axial force and dynamic stiffness between pipe and surrounding material.  
 
KEYWORDS: Buried, pipeline, Earthquake, Experimental, Numerical, Axial Vibration  
 
 
1. INTRODUCTION 
 
The effect of waves produced by earthquake is one of the most important effects endangering the pipeline 
systems. Earthquake cause shaking of the ground which one of its important characters is its irregular moving 
and also, because of the difference of the phases, strain and curve between two points of pipe is produced. C.H. 
Loh and Wang analyzed a pipe line under the effect of various waves by analytic methods. They made models 
by means of mass and spring and because damping is small, they ignored of its effect. Their idea was to analyze 
the effect of moving earth on buried pipelines, and this showed that this displacement in very effective on 
pipelines. F.Y.Cheng and J.F.Ger analyzed the pipelines in three dimensions and with six components and 
examined each joint in dynamic state. An equation with respect to balanced dynamics and inertia and damping 
was extracted. In their investigation was shown that in the state of network behavior is very important and they 
must examine the three dimension problem. The same analysis by Wang and Change and S.Takada was done 
with the difference with ignoring the damping and inertia effect, because of the minority and they used a 
Cauchy static analysis. Important factor in analyzing such structures could be the behavior of pipe to the around 
soil in modeling of the beam on the elastic bed, this has been investigated by different experts who came up 
with different results. For this, we have to do different tests on different models with almost real situation which 
in this article an experimental model and a method of formulation has been suggested which the behavior of 
pipe to the shaking could be analyzed.  
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2. SUGGESTED FORMULATION 
 
In real situation pipe is buried in soil, and there are related pressures from the soil which this pressure by 
Mareston theory or German is related to properties of soil and pipe characters. Usually a pipe is buried in soil. 
The equation of dynamic balance of axial shaking of an element from the buried pipeline without considering of 
soil weight can be written in this form: 
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Which: pρ = special mass of pipe, Ap = cross section area of pipe, u(x,t)= function of pipe displacement , Ep= 
elasticity model of pipe, Ca= axial damping of pipe and soil, ka= axial stiffness between soil, t= time variable ,x= 
distance variable and pipe, ug(x,t)= function of earth displacement. 
Equation(1) shows the relation of a continuous system which by solving this differential equation we could find 
the related displacement u(x,t) with respect to constants, ka, Ca, Ep, Ap, pρ  . Figure (1) shows the schematic 
form of one element. In the static form, soil and pipe system con be shown with figure (2) with 6 nodes, that the 
springs is the effect of soil around the pipe in Winkler model. The stiffness of soil around the pipe will cause 

L
AE p  isn’t true for equivalent stiffness but ka is effective. L is length of pipe. The dynamic balance relation in 

axial in a discrete system and taking in to considering the added soil mass (Madd), we can write equation (2) for 
2 nodes: 
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Which Mp= nodal mass of pipe, C= nodal damping, kij= equivalent stiffness between soil and pipe relating to 
horizontal node i, and vertical node j, fi(t) = equivalent force of horizontal node i, xi= equivalent displacement in 

horizontal node i, ix
.

= equivalent Speed in horizontal node i , ix
..

 =equivalent acceleration in horizontal line i. 
Eq. 2 can be written in similar form:  
 

)}({}]{[}]{[}]{[
...

tfXKXCXM =++                                                (3) 
 
Which [M]= matrix of mass of soil and pipe system, [C]= matrix of damping of soil and pipe system , [K]= 
matrix of stiffness of soil and pipe system, {f(t)} = vector of equivalent force of horizontal node i, [x]i= vector 

of equivalent displacement in horizontal node i, [ ix
.

]=vector of equivalent Speed in horizontal node i and [ ix
..

] 
= vector of equivalent acceleration in horizontal line i. Figure 3 shows arrangement of displacement sensors. 
 

 
Fig.1- Schematic form of one element 
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Fig.2- Simulation of the soil – pipe behavior by Winkler springs 

 

 
Analysis of other researchers slows that the amount of Madd is not effective and we can disregard it but in this 
article, Madd has been considered. We can use equation (3) for two degrees and in terms of using equation (3) to 
equation (4), Kd would be dynamic stiffness or impedance function:  
  

)}({)}(]{[ tftxK d =                                                       (4) 
 
In case of one degree freedom, impedance function can be shown as equation (5):  
 

CiKMK d ωωω ++−= 2)(                                                               (5) 
 
That ω = excitation frequency (in radian per second). In static form, dynamic stiffness equal to static stiffness (K). In 
case of two degrees freedom, impedance function or matrix of dynamic stiffness would be as following form:  
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Equation (6) is the improved equation (5) that shows the elements of dynamic stiffness in accordance with 
elements of mass matrix damping and static stiffness. We can use these equations by dynamic testing (axial 
vibration) at joints with respect to different frequencies; we can find members of matrix of dynamic stiffness 
under different conditions. The stiffness between soil and pipe (K), in the axial direction, is obtained from the 
following formulation and also from experimental results. Its magnitude and variations are determined by the 
interaction between soil and pipe. Application of the equilibrium principle to one element, gives relations (7) for 
element i (i=1, 6):  
 

i1ii FFF −=∆ −   ,      iii LPF τ⋅⋅=∆  ,      ( )
i

ii
i LP

FF
⋅
−

= −1τ                (7)  

Which: Fi= force between soil and pipe in axial direction of node i, P= perimeter of pipe, Li=distance between node i and 
node i+1 and iτ =shear stress of element i from pipe  

Fig.3- Axial section showing arrangement of displacement sensors 
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Assuming constant strain throughout the element, the strain could be obtained in terms of the two joints 
displacements as:  
 

1
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=ε           (8)  

 
That ui= axial displacement of node i of pipe. Therefore, F1 is calculated as:  
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Considering that Ep, Ap, and L1 are constant along the pipe, we can relate the frictional forces of each element to 
the relation displacement of element. Therefore, the external force exerted on each element, is proportional to 
the relation displacement of the two joints of elements. After that frictional forces of an element related to the 
external force have been found, the process could be repeated for the other external force of F0. The 
interpolation method is used for calculating stiffness. Dynamic stiffness between soil and the pipe, the amount 
of damping, and added mass due to the effect of soil, are the dynamic parameters that should be determined 
from structural dynamics relations and experimental results. The dynamic stiffness kd or the impedance function 
is expressed by Eq.(4). In the case of one degree of freedom, and in the frequency domain, the dynamic stiffness 
is calculated from Eq. (5). From structural dynamics theory, the dynamic displacement is expressed as:  
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That ζ = damping coefficient, o

.
u = initial velocity of harmonic displacement function and 

nω = natural frequency system 

of soil and pipe. The relation between damping coefficient ( ζ ) and amount damping (C) is obtained as:  
 

m
km2m2C n ζ=ωζ=          (11)  

 
Where m is the mass of the pipe together with a soil mass association of surrounding pipe which interacts with 
the pipe, as could be seen from equations, dynamic stiffness (kd), damping coefficient ( ζ ) and damping force 
per speed(C) are dependent on the mass of the soil system, and could be calculated through iteration methods.  
According equation (5), if m is included from pipe mass (Mp) and the added mass (Madd), we have:   
 

( ) ( ) CiKMMK AaddP
2

d ω+++ω−=ω                        (12)  
 
Considering that equation (12) is in complex space, by equating the right side to the left side, we can find Madd, 
and recalculate C. Therefore the independent variation parameters could be calculated one after the other 
through iteration methods. On the right side of equation (12), the only unknown is Madd, and on the left side the 
dynamic stiffness is in frequency space. On the other hand, dynamic stiffness in the frequency space is defined 
as:  
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The system excitation is simple harmonic, and the displacement function is also harmonic with difference phase. 
The excitation force is shown as: 
 

( ) tsinFtf 0 ω=       (14) 
 
After a time lapse, the displacement function becomes:  
 

( ) ( )φω −= tutu sin0                        (15)  

That φ is the difference phase corresponding to the excitation ware force. In the laboratory, a load cell measures 
F0 for different frequencies and excitation amplitudes, and the magnitude of F0 could be read from the monitor 
attached to a Servo-Hydraulic system. In order to produce a dynamic excitation, the amplitude of vibration and 
the excitation frequencies are applied to the damper and static experiments derive as inputs. Then the maximum 
dynamic force F0 is read. From the monitoring, the maximum amplitude of displacement in the axial direction is 
measured by an exact sensor, and then recorded. The excitation frequency has the same frequency as the 
displacement, but the displacement wave lags behind by deference phase φ  due to the existence of damping in 
the system. The amplitude and deference phase are obtained from the following relations:  
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For obtaining the dynamic stiffness from equation (13), we must calculate F( ω ) and X( ω ), which are the 
Fourier transformations for dynamic force and dynamic displacement respectively. Considering that the 
harmonic function has a period T, and t ≥ 0, we can write:  
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Therefore, kd ( ω ) is obtained from (13) as:  
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By setting equal the real and imaginary parts of (12) and (18), we will have:  
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In static conditions, φ is equal to zero. Therefore, from Eq.(19), C is also equal to zero, and K is calculated as 
F0/U0 for the static case. The angular frequency is calculated from 2 fω = π  where f is the measured frequency 
in Hertz.  
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3. THE EXPRIMENTAL MODEL 
  
Parameters such as static stiffness, dynamic stiffness, damping, and the added mass due to interaction with soil, 
should be obtained from the relevant formulas and also from the experimental model developed for this purpose. 
These parameters are effective in the axial dynamic behavior of the pipe, and different factors can affect them, 
including the change of pipe diameter, the material of the pipe, the depth at which the pipe is buried, the type of 
soil, humidity, the compactness of the soil, and the static and dynamic conditions. The laboratory model 
developed consists of different parts. Fig.(4) and Fig.(5) show the arrangement(plan and lateral view) of the 
various parts of the model. The static or dynamic force generated by the Actuator of the Servo- Hydraulic systm 
(part1) is applied to the transformation system (part2), where the normal force is converted into a horizontal 
force and applied to the and of the buried pipe (part3). The total force between soil and the pipe is transferred 
through a second converter from part 2 to the Load cell of the Servo-Hydraulic generator, and shown on the 
monitor screen. The axial displacements of certain points along the pipe are measured by precise sensors (part4), 
and stored in a computer (part 5), and also shown on the monitor screen.   

           

               
4. COMPARISION OF RESULTS 
 
Static stiffness between pipe and soil in the axial direction is suggested, based on the experimental results from 
the model, and also the proposed formulation. A nonlinear analysis by ANSYS software was performed, using 
the static stiffness was obtained, together with other geometric and loading information. Then the ANSYS 
results were compared with experimental results. Fig. (6) is an example of experimental results.  Fig. (7) 
Compares these results with the results obtained from ANSYS analysis. The comparisons show the results to be 
close. The greater displacement obtained from ANASYS software could be due to experimental errors, and also 
because of the behavior of the pipe as a shell, as well as an axial structure. 
In axial behavior, strain occurs only along the pipe in one direction, while if the pipe behaves as a shell, other 
components of strain in the 3D space occur, and this could explain the disparity in the results. Parameters like 
dynamic stiffness between soil and pipe, amount of damping, and added mass due to the axial effect of soil on 
the performance of the system, are among the dynamic parameters determined by the proposed model.  
A conversion factor was applied to the result. The displacement amplitude was measured by sensors. In this 
example, the static stiffness obtained from the suggested formulation method was K= 971.0 kg/mm. the mean 
dynamic stiffness for 0.5 HZ frequently is:  

Fig.5- Arrangement of the various parts of the model 

 
Fig.4- Plan of variation part of model 
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This is less than the static stiffness. This confirms the results obtained by S.Takada. Takada's investigations 
show that the behavior and variations obtained by him are in agreement with the results of this model. The 

dynamic to static stiffness ratio is 828.0 0.85
971.0

=  which less than 1 is.  

Figures (8-9) show variation dynamic stiffness vs. static stiffness for ratio of excitation frequency to natural 
frequency and for various added mass and various damping factor. As it be seen from figures, dynamic stiffness 

for 
nω

ω
<1 don’t increase, but for value larger than 1, it will be increasing as for 

nω
ω

>2 it will increased 5-7 

times. With increasing of damping coefficient, dynamic stiffness increased and for 
nω

ω
=1, with increasing of 

damping factor, dynamic stiffness increased. In nωω <  , dynamic stiffness is smaller than static stiffness.  But 
in high damping coefficient ( 5.0>ρ ), dynamic stiffness is larger than static stiffness. In nωω > , relation of 
dynamic stiffness to static stiffness increased quickly. Added mass was considered in this paper. Natural 
frequency of a degree freedom with consideration of added mass are calculated as following equation: 
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As be seen, natural frequency is related to pipe mass and added mass. When addM  is considered, a complete 
couple is occurred in problem. Because addM  is function of excitation frequency and angle of difference phase 
and amplitude of harmonic force and amplitude of harmonic displacement are function of addM . In result, it 
needs to solve dynamic problem contemporary. 

Fig.7- comparison of experimental results 
with ANSYS results 

Fig.6- Displacement variation vs. force at 
different points along the pipe 
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5. CONCLUSION 
 
Static stiffness in Winkler model, and other dynamic parameters such as damping of the pipe-soil system, 
dynamic stiffness, and the added mass of soil effective on the dynamic and vibration behavior of the system, can 
be determined by using the proposed formulation method, and also the experimental model. The effect of 
factors like depth of buried, pipe diameter, compactness of soil, humidity, and excitation frequency and 
amplitude have been studied on the static an dynamic stiffness between the pipe and soil. It is shown that these 
factors are very effective on the static and dynamic stiffness, as well as damping and added mass of soil.  
Some other conclusions are: 1- Dynamic stiffness between soil and the pipe is less than the static stiffness.       
2- The static behavior between soil and the pipe is nonlinear in the axial direction. 3- With increasing the 
excitation amplitude, amplitude of the force between soil and the pipe is increasing. 4- Increasing the excitation 
frequency causes a decrease in the amplitude of force between soil and pipe. 5- Increasing the excitation 
frequency causes a decrease in the dynamic stiffness between soil and the pipe. 6- Damping between soil and 
pipe is high (unlike ordinary structures). 7- Increasing the damping between soil and the pipe causes an increase 
in the difference phase between the harmonic displacement and the harmonic force. 
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