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ABSTRACT: 

This paper discusses the orthotropic behavior of a kind of infill panels: in particular slender clay brick panels are
analyzed in order to calibrate the mechanical characteristics required in force-displacement relationship for an 
infilled RC frame. Two different kinds of clay brick panels (120 mm thick with semi-solid bricks and 80 mm 
thick with hollow bricks) have been tested in the two orthogonal (in plane) principal directions and in the 
diagonal direction. Components were tested too: bricks in compression and mortar both in compression and
bending. The results of this test sequence were discussed in the past in terms of components-to-panel 
compressive strength ratio. In this paper test results in terms of orthotropic plane behavior are discussed and
some criteria to define the elastic characteristic are pointed out. 
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1. INTRODUCTION 
 
Numerous experimental tests on infill panels were performed at the Laboratory of Experiments on Materials 
and Structures of Roma Tre University, these tests are part of a wider research program called “Ecoleader” that
was carried out at the CEA Laboratory of Saclay. Further test sequence on brick components is carrying out at
the Scam Structural Laboratory of Chieti-Pescara University. Tests aim to study RC frames - infill masonry 
interaction and to define a correct numerical approach for this kind of structures. The research team focused the
attention on brick and mortar mechanical characteristics in order to define infill panel characteristics. 
Some correlation formulas have been extensively discussed in the past including infill slenderness effects 
(Biondi et al. 2002) and were used for RC frame modeling and structural analysis (Albanesi et al. 2006, 2008a).
More recently orthotropic bi-dimensional behavior of infill panels was taken into account. Horizontal, vertical
and diagonal compressive tests have been performed on infill specimens with at least five mortar layers. Tests
results in terms of compressive panel strength based on brick and mortar strengths were discussed in Albanesi et
al. 2008b. In this paper the orthotropic behavior of infill panels is pointed out and an original homogenization
criterion is discussed in order to define an useful approach in numerical analysis of infilled RC homogenization
criterion is discussed in order to define an useful approach in numerical analysis of infilled RC frames. 
 
2. ORTHOTROPIC MODEL FOR MASONRY IN-PLANE ELEMENTS 
 
In presence of a seismic action, an infill panel sustains an in-plane loading condition: a vertical component due 
to gravity loads and a horizontal load due to RC frame - infill panel seismic interaction. Thus an in-plane 
stress-stress condition can be assumed in analysis and constitutive equations can be written as: 

i ij jCσ ε=  i ij jDε σ=  (2.1)
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where { }, ,
T

i j ijσ σ σ=σ  and { }, ,
T

i j ijε ε ε=ε  are the in-plane stress and strain tensors respectively, 

C  = stiffness matrix and D  = compliance matrix: 
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If elastic range is considered in these matrixes five independent terms can be defined: iiE  and jjE
longitudinal elastic moduli, ijν  and jiν  Poisson’s ratios ( ijν−  represents the ratio between i-direction to 
j-direction deformations), ijG  shear modulus. Due to compliance matrix symmetry it is possible to assume: 

ij ji

jj iiE E
ν ν

=  1ij

ji

D
D

=  (2.3)

and consequently to obtain symmetrical matrixes defined by means of four independent terms 
Notice that a violation of tensorial invariance is generally detected for fragile materials like infill walls (Bažant
1983); this topic will be discussed later, basing on test results. Stress and strain components in a h kOx x
Cartesian system obtained with a rigid rotation θ of the i jOx x  Cartesian system can be defined as: 

hk ij ih jkn nσ σ=  hk ij ih jkn nε ε=  (2.4)

where the direction cosines, for a positive counterclockwise rotation, can be defined as: 

, , cosih i h jk j kn x n x θ= = = =  , , sinik i k jh j hn x n x θ= = = = −  (2.5)

In this θ  rotate direction, the longitudinal elastic modulus, hhE , can be defined as: 
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 (2.6)

and can be used for example in an equivalent strut model (single or multiple) approach (Biondi et al. 2006). 
As above pointed out, four independent terms have to be defined for an orthotropic medium by means of tests 
while no relationship can be defined between elastic moduli and shear modulus as for an isotropic medium: 

2(1 )
EG
ν

=
+

 (2.7)

For this reason shear test should be carried out in order to use (2.1)÷(2.2) in the case of orthotropic material, 
unfortunately direct shear tests on fragile clay bricks panel specimens are not as simple and stable as
compressive tests, so indirect longitudinal shear tests have to be carried out. 
In order to avoid this shear test necessity, some authors suggested (Pietruszczak et al. 1992, Anthoine 1995) to 
derive the in-plane elastic characteristics of masonry by means a homogenization theory: this theory for periodic
media allows the global behavior of masonry to be derived from the elastic behavior of brick and mortar. 
Then, in the case of a solid brick masonry, components can be assumed to be isotropic medium and their elastic
characteristics mE , mν , mG  (for mortar) and bE , bν , bG (for brick) can be used for masonry wall 
characterization. According to a proposal, useful in the inelastic range too (Gambarotta et al. 1997), the elastic
masonry characteristics can be approximated as: 
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where miη  is the mortar-to-brick volume ratio: 

mj
mi

mj bj

s
s s

η =
+

 1bi miη η= −  (2.10)

being smj and sbj the mortar joint and brick heights in j-direction (normal to bed joints) respectively. 
In the case of hollow and semi-solid bricks panels not only the mortar volume ratio is very low but also the
brick component is an orthotropic medium. For this reason Biondi et al. (2006) proposed a different criterion for
infill panel homogenization. This criterion will be theoretically outlined in the next paragraph and
experimentally evaluated in the next Chapter. It has to be noted that this hypothesis showed a good agreement 
with RC frame experimental data if it has been used in numerical analyses (Albanesi et al. 2006). 
 
2.1. Homogenization criterion based on characteristic compressive strength 
Disregarding any aspect ratio of brick components in shear test (Figure 2 and Figure 3 show that shear specimen 
hasn’t a polar symmetry with respect to plane normal k-direction), elastic moduli can be determined in terms of 
characteristic compressive strength of masonry as suggest by Italian Code (IC) and Eurocode 6 (EC6): 

1000wi wkiE f=  1000wj wkjE f=  (2.11)

where i and j identify (throughout the rest of this paper) the horizontal and vertical directions respectively 
(which alternatively are the strong and weak directions in these test series, due to vertical testing machine load
direction). A simple relationship between shear modulus and elastic modulus is assumed in these Codes too: 

0.40G E=  (2.12)

Using (2.12) for each direction, an average value of the shear modulus and Poisson’s ratio can be derived: 

( ) ( )
10.40

2 2 2 1 2 1
wi wj wjwi

wij
w w

E E EEG
ν ν

⎡ ⎤+⎛ ⎞
= = +⎢ ⎥⎜ ⎟ + +⎢ ⎥⎝ ⎠ ⎣ ⎦

0.25
2

wij wjj
w

ν ν
ν

+
= =  (2.13)

Finally the two unknown orthotropic Poisson’s ratios can be defined: 
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in order to calculate the equivalent diagonal elastic modulus w hhE Eθ = by means of (2.6) and then to derive 
the diagonal compressive strength which is useful for structural analysis: 

1000
w

w
Ef θ

θ =  (2.15)

 
2.2. Homogenization criterion evaluation based on test results 
Test program and tests results on components and masonry were partially shown and discussed in Albanesi et al.
(2008.a), together with a description of the testing machine, laboratory apparatus and stress-strain curves. In this 
paper some remarks will be pointed out to evaluate the proposed homogenization criterion (2.11)÷(2.15). 
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Two kinds of tests were carried out on mortar: three points bending tests (support span 100±5 mm) on prismatic 
40×40×160 mm3 specimens and compression tests on cylindrical 100×200 mm2 specimens: due to test results 
mortar was then classified as M20 (i.e., very high quality). Test results in terms of flexural tensile strength, mff , 

compressive uniaxial strength, mf , flexural and compressive characteristic strengths ( mfkf , mkf ) are summarized 
in Table 1; the characteristic value is obtained from the average one, depending on specimens population or
Code provisions, as: 

{ }min ;k m mf f f kα σ= +  (2.16)

Two kinds of common clay bricks have been tested: hollow non-structural bricks (80×160×330 mm3 

horizontally perforated units with rendering keyways, 6 holes, 58%ϕ =  hollow percentage) and semi-solid 
bricks (120×120×250 mm3 vertically perforated units with single grip hole, 49%ϕ = hollow percentage). A half 
of each brick group was tested in holes direction (strong direction tests) and the other half in perpendicular
in-plane direction (weak direction tests). Test results are shown in Table 1 using the same notation as for mortar.
In the past (Biondi et al. 2002, Biondi et al. 2006, Albanesi et al. 2008.a) some correlations between
compression strength of component elements (brick and mortar) and masonry mechanical characteristics were
discussed paying particular attention to infill slenderness effects on masonry strength. 
Three relationships were selected for this scope: the Italian Code (IC) functional relationship (2.17), the
Eurocode 6 (EC6) explicit relationship (2.18) and the relationship (2.19) (valid for medium strength elements,
Tassios 1998). In (2.17) and (2.18) the panel slenderness influence in not explicit while in (2.20) it is considered
in terms of panel height-to-thickness ratio ( w wh t ): 

( );wk bk mmf f f f=  (2.17)

( )wk bm mmf k f fα βδ=  (2.18)
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 (2.19)

Table 1. Compression test results on components and masonry panels (in MPa) 

f mf f mfk f bm f bk f bm f bk f bm f bk f bm f bk
4.82 3.37 10.40 6.07 23.39 20.17 4.97 2.55 5.11 2.56

f m f mk
23.49 15.89 f wm f wk f wm f wk f wm f wk f wm f wk

Exp. 3.11 2.59 7.95 6.63 2.24 1.78 3.08 2.56
IC 3.61 3.01 15.71 13.09 1.47 1.16 1.98 1.65

EC6 6.86 5.72 12.03 10.02 3.42 2.85 3.99 3.32
Tassios 2.88 2.30 5.37 4.30 2.42 1.94 2.74 2.19

hollow panels semi-solid panels hollow panels semi-solid panels

semi-solid bricks

compressive panel strong compressive tests panel weak compressive tests

flexural hollow bricks semi-solid bricks hollow bricks
mortar tests brick strong compressive tests brick weak compressive tests

 
 
In Table 1, (2.17)÷(2.19) theoretical results are compared with experimental ones. Mpa are used. The IC
provision is in good agreement with experimental results for hollow panels while the EC6 is more efficient,
even with some over-estimation, for semi-solid panels. 

{ }min
min ;

1.20 0.90
wiwm
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 (2.20)

Due to the small number of specimens, the (2.20) conventional relationship is used, according to Italian Code in
order to obtain both experimental values and characteristic theoretical values. 
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Figure 1. Equivalent diagonal elastic modulus ratios for hollow (left) and semi-solid (right) panels 

 
A comparison of diagonal elastic modulus ratios ( 1 expw IC wE Eθ θλ =  solid line, 2 6 expw EC wE Eθ θλ = dot line, 

3 expw T wE Eθ θλ =  dashed line) is shown in Figure 1. Diagonal elastic modulus is obtained using (2.6) and

homogenization criteria (2.11)÷(2.15) for experimental data ( expwE θ ), Italian Code ( w ICE θ ), Eurocode 6 ( 6w ECE θ ) 

and Tassios ( w TE θ ) in the range { }1tan / 0.50; / 2.00w w w wh l h lθ −= = = . 
The efficiency of Italian Code provisions is similar to Tassios provision due to the balance of IC overestimation
in strong direction and underestimation in weak direction. EC6 provision has a lower efficiency due to a general
overestimation of masonry panel strength.  
 
3. ORTHOTROPIC MODEL DISCUSSION BASED ON IN-PLANE TESTS 
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Figure 2. Specimen geometry and displacement transducers disposal for semi-solid panels: strong direction 
(top), weak direction (middle) and diagonal direction (bottom) [vertical loading direction] 

 
Globally 24 infill square panels with 5÷10 mm thick mortar layers have been built using the previously 
described bricks and mortar: 12 hollow panels 1010×1010×800 mm3 (horizontal holes), 12 semi-solid panels 
770×770×120 mm3 (vertical holes). Panels were tested in compression, in both strong and weak directions, and
in the diagonal one by means of a load-control testing machine. A redundant number of displacement
transducers (linear potentiometer with ±50 mm stroke) have been placed with hinged-ends and measure bases 
are so long as to include at least 3 mortar layers in hollow direction. As shown in Figure 2 and Figure 3, 10 
displacement transducers (6 longitudinal, 2 transversal, 2 diagonal) have been applied on each specimen and 8
displacement transducers (2 longitudinal, 2 transversal, 4 diagonal) for diagonal shear ones. 
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Figure 3. Specimen geometry and displacement transducers disposal for hollow panels: strong direction (top), 

weak direction (middle) and diagonal direction (bottom) 
 
3.1. Test result discussion 
Considering specimen geometry and displacement transducers disposal (Figure 2 and Figure 3), the following 
quantities are determined at each loading step n in compressive tests: 
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where wnF  current compressive load, wA  panel gross area perpendicular to compressive load, LΔ , L and n
are transducer displacement, length and number respectively in longitudinal ( l j≡ ), transversal ( t i≡ ) and 
diagonal [ ( / 4)d h θ π≡ = ] directions according to subscript l, t and d. If peak (maximum) strength is 
determined, wmf , elastic characteristics can be defined as secant characteristics in the elastic range: 

( )2 1wl wmf fα αΔ = −  ( ) ( )2 1wl wl wm wl wmf f f fε ε α ε αΔ = −  (3.2)

wl
wl

wl

fE
ε
Δ

=
Δ

 wt
wtl

wl

ε
ν

ε
Δ

= −
Δ

 (3.3)

where j-direction is (vertical) load direction and i-direction the normal (horizontal) direction, as above said. 
In this paper the elastic loading branch between 25% ( 1 0.25α = ) and 50% ( 2 0.50α = ) of the failure load is 
considered both for compressive and shear tests. Diagonal strains ( / 4θ π= ) can be used in order to control the 
step by step strain compliance: using Eqn. (2.4) the longitudinal strain error wnε  can be determined as: 

( )2 2cos sin
2

wtn wln
wn wdn wtn wln wdn

ε ε
ε ε ε θ ε θ ε

+
= − + = −  (3.4)

In the case of shear test, at each loading step n shear stress wnτ  and shear strain 2wtln wtlnγ ε=  can be obtained 
by means of longitudinal, transversal and diagonal transducer measures: 
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 (3.5) 

Transversal displacement transducers can be used in shear tests in order to control Poisson’s ratio value in this 
direction: while longitudinal strain path is constant, the transversal one can be assumed as maximum at
specimen center, maxwtε , and zero at specimen edges. If wtε  of Eqn. (3.5) is assumed linearly variable, 
maximum transversal strain can be calculated and an equivalent Poisson’s ratio wdν  determined: 
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Also in this case diagonal strains ( ( / 4)whn wdnε ε θ π= = , ( 3 / 4)wkn wdnε ε θ π= = ) can be used in order to control 
the step by step strain compliance by means of the diagonal strain error: 

wdn whn wknε ε ε= −  (3.7)

In Table 2 elastic characteristics of panels, i.e. terms of elastic stiffness matrix, are summarized; for a better
understanding subscript s stands for strong (hollow) direction, while w for weak (normal) direction. In Table 2
the equivalent Poisson’s ratio wdν  is also shown. Notice that experimental elastic moduli are at least double
than Code provision, Eqn. (2.11), a greater difference can be detected in the shear modulus of hollow panels
(almost eighty percent of the elastic modulus). Thereafter for semi-solid panels and for hollow panels the 
average Poisson’s ratios is much more greater than both the Code value ( 0.25wν = ) and the maximum elastic 
value ( max 0.50ν = ) of the elastic theory and it is due to non linear behavior of masonry also for low strength
level. In spite of this result the compliance matrix D is almost symmetrical: Eqn. (2.3) lets to 

0.988ws swD D =  and 1.024ws swD D =  respectively for semi-solid and hollow panels. 
In Figure 4 the equivalent diagonal elastic modulus for hollow (left) and semi-solid (right) panels are 
determined and shown. Using Eqn. (2.6) ( 4) 8355 MPaw wdE Eθ π = =  and ( 4) 7693 MPaw wdE Eθ π = = are 
obtained for semi-solid and hollow panels in the diagonal direction respectively. If compliance matrix symmetry 
is taken into account, diagonal Poisson’s ratios are equal to 0.625wdν =  and 0.565wdν =  for semi-solid and 
hollow panels. These values are quite similar to those in Table 2 determined using Eqn. (3.6).  
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Figure 4. Equivalent diagonal elastic modulus for hollow (left) and semi-solid (right) panels 
 
Finally in Table 2 the proposed homogenization criterion (2.11)÷(2.15) is applied with two hypotheses: the 1st

integrally considering strong and weak elastic modulus obtained as in Eqn. (2.11), the 2nd considering elastic 
modulus experimental values and then deriving shear modulus and Poisson’s ratio with (2.12)÷(2.14) Eqns. 
 

Table 2. Elastic characteristics of panels 

E ws E ww G wsw ν wws ν wsw ν wd E ws E ww G wsw ν wws ν wsw ν wd
[Mpa] [Mpa] [Mpa] [-] [-] [-] [Mpa] [Mpa] [Mpa] [-] [-] [-]

experimental 11384 4494 3135 0.85 0.34 0.70 5504 4462 3852 0.40 0.32 0.62

1 st  iph.: E w =1000f wk 6607 2582 1838 0.36 0.14 2612 1797 882 0.30 0.20

2 nd  iph.: E w =E wexp 11384 4494 3175 0.36 0.14 5504 4462 1993 0.28 0.22

semi-solid panels hollow panels

 
 
In Figure 5 a comparison of diagonal elastic modulus ratios ( 1 1w hyp wE Eθ θλ =  solid line, 2 2w hyp wE Eθ θλ = dot 
line) is shown. It is possible to note a quite acceptable accuracy for the proposed homogenization criterion if 
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actual compressive elastic moduli are selected.  
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Figure 5. Equivalent diagonal elastic modulus ratios for hollow (left) and semi-solid (right) panels 

 
4. CONCLUSIONS 
 
Many factors make very difficult to define an efficient approach to r.c. infilled frame analysis: in particular it is 
important to define correctly both structural schemes and constitutive behavior. 
So, if a strut model is considered for strong nonlinear analysis, strut geometry and disposal play a relevant role
for stress distribution in r.c. frame and, consequently, plastic hinges spreading. In this case constitutive behavior
could have a less relevant role (Albanesi et al. 2006). 
On the other hand, if an uncracked or quite elastic structural analysis has to be done, an appropriate constitutive
behavior has to be used: in this case both brick anisotropy and panel slenderness have to be taken into account.
Some criteria are been discussed in this paper. 
Particularly, a homogenization criterion to evaluate equivalent diagonal elastic modulus for hollow and
semi-solid panels, proposed in the past, is discussed. 
On the basis of this criterion two hypotheses have been carried out to determine infill masonry behavior: the 
first using a conventional method for elastic modulus evaluating, the second using actual elastic modulus results 
of a wide test campaign. 
It is shown that the proposal to use the actual compressive elastic modulus carried to results quite similar to
experimental data; these results will be used by authors for infill equivalent strut calibration in analyses that will
been compared with tests on infill frame carried out for the same project These studies are incoming. 
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