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ABSTRACT: 

 

Among experimental testing methods the shaking table testing method is one of the most realistic techniques to 

study the seismic behavior of structural systems or components thereof. Shaking table tests are able to produce 

nearly realistic prototype conditions, giving important insight into critical issues such as collapse mechanisms, 

component failures, acceleration amplifications, residual displacements and post-earthquake capacities. Ideally, 

the specimen tested on a shaking table is excited as it would be during an actual earthquake event. However, due 

to the nonlinear behavior of the tested specimen and the limitations of the hydraulic control system, the motion 

of the shaking table is usually different from the commanded motion recorded during an earthquake event. This 

difference may produce an unintended response of the tested structure; ultimately, it may result in a pre-mature 

failure of the specimen. 

Traditional tuning of shaking table control systems has focused on linear control algorithms, where the 

structural system is assumed to remain linear-elastic and where there are no model uncertainties and 

disturbances in the system. In this paper, a nonlinear control algorithm, based on the Lyapunov stability 

theorem, is utilized to control a shaking table test of a nonlinear single degrees-of-freedom system with the goal 

to account for nonlinear response, model uncertainties and other disturbance affecting the test as the test is being 

performed. Simulation results indicate that such nonlinear control algorithm can be used to achieve excellent 

tracking, even when the tested structure behaves nonlinearly. The example also demonstrates the ability of the 

nonlinear control algorithm to compensate for disturbances, where the actuator force input to the shaking table 

plant are altered with respect to the force commands that the control algorithm puts out. Thus, the proposed 

nonlinear shaking table control algorithm is not only a viable alternative, but also a way to significantly improve 

the quality of shaking table tests. 
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1. INTRODUCTION 

 

Traditional control of shaking table tests is based on the use of linear control algorithms to minimizing tracking 

errors between the command and feedback signals. However due to the nonlinear nature of most tested 

specimens, it is very difficult, or impossible, to achieve excellent tracking using such linear control algorithms. 

Thus, a nonlinear control algorithm, the sliding mode control (SMC) strategy, is chosen to regulate the 

movement of the shaking table. The sliding mode controller is designed using a Lyapunov-like stability 

function, which permits the algorithm to control nonlinear systems. In addition, the sliding mode controller 

contains an inherent robustness term, which is capable of compensating for any model uncertainties. This is 

especially useful in the environment of experimental testing, where most of the model parameters are not easily 

assessable. In this paper, a sliding mode control algorithm is derived to regulate a unidirectional shaking table, 

where a nonlinear single-degree-of-freedom specimen is tested. Similar approaches could be utilized for multi-

degree-of-freedom systems tested on multidirectional shaking tables. To evaluate the performance and accuracy 

of the developed sliding mode controller, the response of the shaking table and the single-degree-of-freedom 

bridge column specimen are compared against the open-loop (OL) and the traditional PID control algorithms. 
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2. MODELLING OF THE SYSTEM 

 

Figure 1 shows the model of a cantilever bridge column that is being tested on a unidirectional shaking table. 

For modeling purposes the column is idealized as a single-degree-of-freedom specimen. Hence, the only two 

free degrees-of-freedom of the system are d
t
 and d

s
, which represent the absolute displacement of the shaking 

table and the relative displacement of the specimen, respectively. 

 

t = 0
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Figure 1: Model of the idealized system. 

 

To simulate the seismic response of the simplified model shown above, parameters from the shaking table tests 

conducted by (Mahin et. al., 2006) (Figure 2) are adopted for this study. The tested specimen had an unbounded 

post-tensioning tendon in the center of the column, which provided a restoring force to re-center the specimen 

after sever inelastic damage. To simplify the modeling assumptions, the flag-shaped hysteresis-loop of the 

specimen was replaced by a hysteresis-loop without re-centering capability. The adopted hysteresis-loop 

represented a column with similar initial stiffness and strength but without the stiffness degradation after cycles 

of inelastic deformation. Figure 3 shows the displacement loading history and the corresponding hysteresis-

loops of the idealized cantilever column specimen. 
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 Figure 2: Bridge column test specimen  Figure 3: SAC loading history and hysteresis- 

 on EERC shaking table. loops of the idealized model 
 

The dynamic responses of the shaking table/specimen configuration (Figure 1) can be modeled using the 

following system of two second-order nonlinear differential equations. 
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where d
t
, d

t
, d

s
 and d

s
 are the absolute velocity and acceleration of the table and the relative velocity and 

acceleration of the specimen, respectively. 
 
m

t
is the mass of the shaking table, 

 
m

s
is the mass of the specimen, 

 
c

s
is the damping of the specimen, 

 
P

s
is the nonlinear resisting force of the specimen and  F  is the control force 

of the actuator. To model the nonlinear resisting force of the specimen, a Bouc-Wen model (Bouc, 1971; Wen, 

1976) as shown in Equations (2.2) is used. 

 

 
P
s
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,d
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d
s
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s
z z

n 1

+ d
s
z
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d
s

 (2.2) 

 

where  is the ratio of the post-yield to elastic stiffness, 
  
k

e,s
is the elastic stiffness, 

  
d

y ,s
is the yield 

displacement,  z is a time varying hysteretic parameter which can be solved for using Equation (2.2b) and ,  

and  n  are dimensionless parameters that control the shape of the hysteresis-loops. 

 

To solve the system of equations, the two second-order differential equations shown in Equation (2.1) are 

transformed into a state space representation as shown in Equation (2.3). The dynamic response of the system is 

solved using Matlab’s ode23s solver (MathWorks, 2008). Values of 1e-6 were selected for both the relative and 

absolute tolerances. 
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3. SELECTION OF CONTROL ALGORITHMS 

 

To compare the effectiveness of the different control algorithms, the seismic response of the idealized model 

was analyzed using the SACNF01 near-fault ground motion of the SAC database (Somerville, 1997) (Figure 4). 
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Figure 4: SACNF01 near-fault ground motion record. 
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The ground motion was originally recorded during the 1978 Tabas earthquake. The record was scaled and 

baseline corrected to match the capacities of the EERC shaking table located at the University of California, 

Berkeley. The dynamic response of the specimen excited by the selected ground motion was first simulated 

using the exact ground acceleration history. These results, as shown in Figure 5, served as the benchmark 

response to evaluate the effectiveness of the different control algorithms. 
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Figure 5: Response of the specimen subjected to the SACNF01 near-fault ground motion. 

 

 

3.1 Open-Loop Control (OL) 

 

The simplest control algorithm to regulate the shaking table is to use open-loop control. The controller 

calculates the actuator force by multiplying the sum of the table and specimen masses with the input 

acceleration. This control algorithm ignores the nonlinear interaction force between the specimen and the table 

and does not adjust its input using any feedback measurements. 

 

 

3.2 PID Control (PID) 

 

To improve the performance of the control system, the open-loop controller is replaced by a closed-loop control 

technique, where the input signal to the table is adjusted according to the feedback error measured during 

testing. The PID controller is one of the most common linear closed-loop control algorithms, where the driving 

signal is adjusted based on a linear combination of the feedback error, the integral of the feedback error and the 

derivative of the feedback error. By selecting the appropriate gains that multiply these three terms, the PID 

controller modifies the closed-loop dynamics, which in term forces the error dynamics of the system 

asymptotically to zero. Once the error dynamics reaches zero perfect tracking is obtained. 

 

The implementation of the PID controller (in the Matlab/Simulink environment (MathWorks, 2008)) for the 

shaking table test is illustrated in Figure 6. The plant represents the system dynamics of both, the shaking table 

and the cantilever column specimen. The input to the plant is the control force and the outputs of the plant are 

the different states of the table and specimen. The error dynamics of the system was selected based on the error 

of the table displacement. To minimize such error dynamics, three constant gains that multiply the feedback 

error, the integration of the feedback error and the derivative of the feedback error were selected. For the 

purpose of tuning the PID controller, the specimen was replaced by a rigid block of equal mass. This means that 

the interaction forces between the table and the specimen were ignored. This is a common approach for tuning 

shaking tables without damaging specimens prior to testing. However, the tuning of the PID controller still 

required some engineering judgment and experience. Once the PID controller had been tuned to satisfaction, the 

rigid block was replaced by the specimen. 
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Figure 6: Simulink model of system with PID controller. 

 

 

3.3 Sliding Mode Control (SMC) 

 

The PID controller provides significant performance advantages over the open-loop controller. However, the 

performance of the PID controller is significantly affected by ignoring the nonlinear interaction force of the 

specimen and the influence of external disturbances. To overcome this disadvantage, it is proposed to instead 

utilize a sliding mode control algorithm to regulate the shaking table. 

 

Sliding mode control is one of the robust control techniques that aim at controlling nonlinear systems including 

model uncertainties and disturbances. The control algorithm employs a Lyapunov-like function to drive the 

tracking error asymptotically towards zero, which again provides the desired tracking. Even if there are model 

uncertainties and/or disturbances present, the sliding mode control algorithm is able to overcome these 

nonlinearities using its robustness term and achieve excellent tracking. 

 

3.3.1 Design of the Sliding Mode Controller 

 

The sliding mode controller is designed using a Lyapunov-like function such as the one shown in Equation 

(3.1). If Equation (3.1a) is a positive define function, and Equation (3.1b) is selected to be a negative definite 

function, the Lyapunov stability theorem guarantees that the scalar function,  S , will go to zero asymptotically. 

 

 

   

V =
1

2
S

2

V = SS

 (3.1) 

 

If  S  is now defined as a combination of the displacement and velocity tracking error as shown in Equation (3.2) 

and if in addition Equation (3.1b) is selected to be equal to   KS
2

 (a negative definite function), the Lyapunov 

stability theorem guarantees that  S  asymptotically converges to zero. This means that the solution 
   
x

1
= e

t
 of 

the tracking error equation will also asymptotically converge to zero and therefore achieve perfect tracking. 

 

 S = x
1

x
1
 (3.2) 

 

where
   
x

1
= x

1
x

1d
, 
   
x

1
= x

1
x

1d
,  is a strictly positive constant (that defines the exponential convergence 

rate on the sliding surface), x
1
, x

1
 are the actual displacement and velocity of the table and x

1d
, x

1d
 are the 

desired displacement and desired velocity of the table, respectively. 
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Taking the derivative of Equation (3.2) and substituting the states from Equation (2.3), the derivative of  S  can 

be expressed in the following manner. 
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Finally, substituting Equation (3.3) and    V = KS
2
 into Equation (3.1b), the following sliding mode control law 

is obtained. 

 

 S = KS F =
1

b
CE x( ) + f + KS( )  (3.4) 

 

 

4. EVALUATION OF CONTROL ALGORITHMS 

 

To achieve a more realistic simulation of the system dynamics, an external disturbance and command saturation 

were added to the control force. For the purpose of this study, the control force was limited to 80% of the 

actuator capacity, which corresponded to 240 kips. The disturbance was modeled by adjusting the actuator 

forces utilizing a normal distributed random variable with mean of 1.0 and variance of 0.1. 

 

Figure 7 shows the tracking indicators for the table displacement, velocity and acceleration. The tracking 

indicators were calculated according to the formula presented in (Mercan and Ricles, 2007). The indicator is 

based on the enclosed area of the hysteresis loops when actual output is plotted versus desired input. If the value 

of the indicator is increasing the response is leading. On the other hand, if the indicator is decreasing the 

response is lagging. The results show that the OL controller did not produce good tracking. The tracking 

indicator increases rapidly, leaving the graph after the first 2.5 seconds. On the other hand, the PID and SMC 

controllers were able to achieved good tracking. The SMC controller achieved the best tracking performance 

and in addition was not affected by the disturbance in any way. The PID controller performed slightly worse 

than the SMC controller. In addition, the tracking performance was clearly affected by the presence of the 

disturbance. These trends are even more pronounced for velocities and accelerations than for displacements. 

 

Table 4.1 shows the maximum control forces in the actuator. The results indicate that the PID controller requires 

the largest control force and reaches the saturation limited of the actuator. The SMC controller requires the least 

amount of control force. With the disturbance added to the system, larger actuator forces are required. 
 

Table 4.1: Maximum control forces in the actuator. 

Control algorithm Without disturbance With disturbance 

OL 133.7 kips 173.6 kips 

PID 240.0 kips 240.0 kips 

SMC 101.9 kips 105.7 kips 

 

Figure 8 illustrate the tracking indicators for the specimen response compared against the benchmark response 

presented in Figure 5. The results indicate that the OL controller damages the specimen pre-maturely. The 

displacement tracking indicator increases out of bound. The PID and SMC controller both are able to achieve 

accurate displacement tracking. Similar trends are observed for the velocity tracking indicators. However, the 

acceleration tracking indicators demonstrate that the PID controller produces large acceleration errors, which is 

mainly caused by the saturation of the actuator force. On the other hand, the SMC controller produces excellent 

acceleration tracking. Similar structural responses are observed with and without the added disturbance. 
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Figure 7: Tracking indicators of the table response for different control laws. 
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Figure 8: Tracking indicators of the specimen response for different control laws. 
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5. CONCLUSIONS 

 

The shaking table testing method is one of the most realistic experimental testing techniques to evaluate the 

dynamic response of the structure or components thereof. However, the accuracy of a shaking table test depends 

strongly on the control algorithm used to regulate the shaking table. In this paper, an idealized nonlinear single-

degrees-of-freedom system tested on a unidirectional shaking table has been studied. To properly model the 

system dynamics, the nonlinearity of the specimen, the saturation of the actuator control force and an additional 

external disturbance have been considered. Three different controllers were designed and implemented. The 

responses of the table and the specimen were then simulated for the different controllers with and without 

disturbances. As expected, the results indicated that the OL controller produced poor tracking in all situations. 

On the other hand, the PID controller was able to produce good displacement tracking, but performed poorly in 

tracking velocities and accelerations. Contrary, the SMC controller achieved excellent tracking for all response 

quantities. Furthermore, performance was not affected by external disturbances, confirming the robustness of 

the SMC controller. 

 

The SMC controller was able to control the table with lower actuator force and thus it was less likely that the 

actuator capacity was exhausted. This provides a significant advantage over the traditional PID controller and 

allows for a larger range of specimens and configurations to be tested. 

 

Further research should be conducted on the sliding mode control algorithm. Specifically, the performance of 

the controller should be verified in a real application in the laboratory environment. Also, the theory should be 

extended to multi-degree-of-freedom systems tested on multidirectional shaking tables. Once the 

implementation of the sliding mode controller has been validated experimentally, these research results could 

significantly contribute to the improvement of the shaking table testing method. 
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