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ABSTRACT : 

In this paper the dynamic response of base-isolated block-like slender objects, such as statues, subjected to 
horizontal ground excitation is investigated. The structural model employed consists of a rigid block supported 
on a rigid base, beneath which the isolation system is accommodated. Assuming no sliding of the block relative 
to the supporting base, when subjected to ground excitation the system may exhibit two possible patterns of 
motion, namely pure translation, in which the system in its entirety oscillates horizontally (1 degree-of-freedom
response), and rocking, in which the rigid block pivots on its edges with respect to the horizontally-moving base
(2 degree-of-freedom response). The dynamic response of the system is strongly affected by the occurrence of 
impact between the block and the horizontally-moving base, as impact can modify not only the energy but also 
the degrees of freedom of the system by virtue of the discontinuity introduced in the response. Therefore, the 
critical role of impact in the dynamics of the system necessitates a rigorous formulation of the impact problem. 
In this study, a model governing impact from the rocking mode is derived from first principles using classical
impact theory. Numerical results are obtained via an ad hoc computational scheme developed to determine the 
response of the system under horizontal ground excitation. 
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1. INTRODUCTION 
 
There is a wealth of elements of cultural heritage worldwide and thus a widespread challenge to preserve this
important legacy. From irreplaceable museum artifacts and statues to intricate decorative art objects, the range 
and complexity of materials, forms and geometry makes protecting this heritage against earthquakes a
formidable task. Yet despite the need for conservation efforts, only recently research attempts have been 
pursued in this direction. In this paper the seismic performance of base-isolated block-like objects, such as 
statues, is investigated. The seismic behavior of such objects can be analyzed within the context of rigid-body 
dynamics.  
 
In the literature there is a wealth of research papers on the seismic behavior of block-like structures. Housner's 
landmark study has provided the basic understanding on the rocking response of a slender rigid block and
sparked modern scientific interest. His model is based on the assumption of perfectly-inelastic impact and 
sufficient friction to prevent sliding during impact. Following Housner’s fundamental work, numerous studies 
[e.g. Yim et al. (1980), Ishiyama (1982), Spanos and Koh (1984), Shenton and Jones (1991), Makris and 
Roussos (2000)] have been reported in the literature dealing with various aspects of the complex dynamics of 
the single rigid block. Moreover, the dynamic behavior of two-block structures has been studied by Psycharis 
(1990) and Spanos et al. (2001), who analyzed the non-linear dynamic response of systems consisting of two 
blocks, one placed on top of the other, free to rock without sliding. Such a configuration can be thought of as a
model of ancient statue placed on top of a block-like base.  
 
Only recently has the seismic protection of objects of cultural heritage become a subject of interest of many 
researchers. Agbabian et al. (1988) were perhaps the first to explicitly deal with the seismic protection of art
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objects. Their work aimed at the development of analytical and experimental procedures for the evaluation of
the seismic mitigation of various museum contents, at the Jean Paul Getty Museum in Malibu, California. 
Subsequently, Augusti et al. (1992) studied the seismic response of art objects and proposed some simple rules 
for the design of displays in order to mitigate the seismic risk of valuable exhibits. Aiming at the protection of 
cultural heritage through the application of base isolation, Vestroni and Di Cinto (2000) performed a parametric 
study on the response of an isolated statue modeled as a single-degree-of-freedom system, with the isolator 
characterized by a hysteretic force-displacement law. Moreover, Myslimaj et al. (2003) proposed the installation 
of Tuned Configuration Rail (TCR), a rolling type base-isolation system, underneath showcases, preservation 
racks, shelves and statues to control their seismic response. More recently, Caliò and Marletta (2003) examined
the vibrations of art objects modeled as rigid blocks isolated with viscoelastic devices and performed numerical 
investigations under impulsive and seismic excitations. 
 
In this paper the dynamic response of base-isolated block-like slender objects, such as statues (Figure 1),
subjected to seismic excitation is investigated. The structural model employed consists of a rigid block 
supported on a rigid base, beneath which the isolation system is placed. Assuming sufficient friction to prevent
sliding of the block relative to the supporting base, when subjected to ground excitation, the system may exhibit 
two possible patterns of motion, namely pure translation, in which the system as a whole realizes only 
horizontal displacement ( )u t , and rocking, in which the rigid block experiences rotation ( )tθ  with respect to 
the horizontally-moving base. Thus, the active degrees of freedom of the system considered are dependent on 
the nature of the response, with the system possessing 2 degrees of freedom for motion realized in the rocking
mode and 1 degree of freedom for motion realized in the pure-translation mode. The formulation of the problem 
involves derivation of the nonlinear equations of motion, transition from one mode to the other, and a rigorous 
formulation of the impact model based on classical impact theory. 
 

 
 

Figure 1: Schematic of a base-isolated statue 
 
 
2. ANALYTICAL MODEL 
 
2.1. Model Considered 
 
The system considered consists of a symmetric rigid block of mass m  and centroid mass moment of inertia I , 
supported on a rigid base of mass bm  (Figure 2a). The entire system is base-isolated with a linear isolation 
system composed of a linear spring k  and a linear viscous dashpot c . The rigid block of height 2H h= and 
width 2B b=  is assumed to rotate about the corners O  and 'O . The distance between one corner of its base 
and the mass centre is denoted by r  and the angle measured between r  and the vertical when the body is at 
rest is denoted by α , where 1tan ( / )b hα −= . 
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Figure 2: Model at rest and oscillation patterns  
 

The horizontal and vertical displacements of the mass center of the block relative to an inertial frame of 
reference are denoted by ( )X t  and ( )Z t  respectively, while the corresponding displacements relative to the 
base are denoted by ( )x t  and ( )z t . The angular rotation of the block is denoted by ( )tθ , positive in the 
clockwise direction, and the horizontal displacement of the base relative to the foundation is denoted by ( )u t . 
 
 
2.2. Initiation of Rocking 
 
When subjected to ground acceleration gx&& , the supporting base will oscillate in the horizontal direction with a
displacement ( )u t  relative to the foundation. The rigid block will be set into rocking on top of the moving base
when the overturning moment due to external loads, ( )over gM m u x h= +&& && , exceeds the available resisting

moment due to gravity, resM mgb= , yielding 
 

 g
bu x g
h

+ >&& &&  (2.1)

 
 
2.3. Equations of Motion 
 
Assuming no sliding of the block relative to the supporting base, when subjected to ground excitation the 
system may exhibit two possible patterns of motion: (a) pure translation, in which the system in its entirety 
oscillates horizontally with displacement ( )u t  (1 degree-of-freedom response), and (b) rocking, in which the 
rigid block pivots on its edges with rotation ( )tθ  as the supporting base translates horizontally with ( )u t (2 
degree-of-freedom response). The governing equations for each pattern of motion are herein formulated by 
means of the Lagrange method. 
 
2.3.1 Pure-translation mode  
 
The equation of motion of the system in the pure-translation mode is 
 
 ( ) ( )b b gm m u cu ku m m x+ + + = − +&& & &&  (2.2)
 
which is the classical linear second-order differential equation governing the response of a 
single-degree-of-freedom system to ground excitation. 
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2.3.2 Rocking mode  
 
In the rocking mode the system possesses two degrees of freedom. Using as generalized coordinates 1q u≡ , the 
horizontal translation of the base relative to the ground, and 2q θ≡ , the rotation angle of the object about a 
bottom corner, Lagrange’s equations take the form 
 

   and  u
d T T V d T T VQ Q
dt u u u dt θθ θθ

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + = − + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂∂⎝ ⎠ ⎝ ⎠&&
 (2.3)

 
in which T  denotes the kinetic energy of the system, V  the potential energy of the system, and kQ the 
generalized nonconservative forces. 
 
The kinetic energy of the system is obtained as 
 

 ( ) ( ) ( )2 22 21 1 1cos sin cos sin
2 2 2b g gT m u x m u x h b b h Iθ θ θ θ θ θ θ θ θ⎡ ⎤= + + + + + + − +⎢ ⎥⎣ ⎦

& & & & && & & &  (2.4)

 

in which the first term is associated with pure translation of the base, and the second and third term are associated 
with general planar motion of the block. 
  
The potential energy of the system is obtained as 
 

 ( )21 sin 1 cos
2

V ku mg b hθ θ= + ⎡ − − ⎤⎣ ⎦  (2.5)

 
in which the first term is associated with the potential energy due to elastic deformation of the spring and the 
second term is associated with the potential energy due to gravity. 
 
The generalized forces kQ  are derived via the virtual work of the nonconservative forces as 
 
 , 0uQ cu Qθ= − =  &  (2.6)
 
Substituting Equations (2.4) through (2.6) into Equations (2.3) yields the governing equations of motion for 
rotation about O  ( 0θ > ). The governing equations of motion for rotation about O′  ( 0θ < ) can be derived in a 
similar manner. Combining the equations for rotation about O  and O′ , leads to a compact set of equations 
governing the rocking mode of the object on top of the moving base: 
 
 ( ) ( ) ( ) ( )2cos sgn sin sgn cos sinb b gm m u cu ku m h b m b h m m xθ θ θ θ θ θ θ θ+ + + + ⎡ + ⎤ + ⎡ − ⎤ =− +⎣ ⎦ ⎣ ⎦

&& &&& & &&  (2.7)
 

 ( ) ( ) ( ) ( )2 cos sgn sin sgn cos sin cos sgn sin gmr I mu h b mg b h m h b xθ θ θ θ θ θ θ θ θ θ+ + ⎡ + ⎤+ ⎡ − ⎤ =− ⎡ + ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦
&& && &&  (2.8)

  
where sgnθ  denotes the signum function in θ . Note that equations (2.7) and (2.8) hold only in the absence of 
impact ( 0θ ≠ ). At that instant, both corner points O  and O′  are in contact with the base, rendering the above 
formulation invalid. The impact problem is addressed separately in the following section. 
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3. IMPACT MODEL 
 
The dynamic response of the system is strongly affected by the occurrence of impact(s) between the block and the 
horizontally-moving base. In fact, impact affects the system response on many different levels. On one level, it 
renders the problem nonlinear (aside from the nonlinear nature of the equations themselves) by virtue of the 
discontinuity introduced in the response (i.e. the governing equations of motion are not valid for 0θ = ). That is, 
impact causes the system to switch from one oscillation pattern to another (potentially modifying the degrees of 
freedom), each one governed by a different set of differential equations. Further, the integration of equations of 
motion governing the post-impact pattern must account for the ensuing instantaneous change of the system’s
velocity regime. On another level, the effect of impact on the dynamic response is also evident in the energy loss
of the system manifested through the reduction of post-impact velocities. 
 
Therefore, the critical role of impact in the dynamics of the system necessitates a rigorous formulation of the 
impact problem. In this paper a model governing impact is derived from first principles using classical impact
theory. According to the principle of impulse and momentum, the duration of impact is assumed short and the 
impulsive forces are assumed large relative to other forces in the system. Changes in position and orientation are 
neglected, and changes in velocity are considered instantaneous. Moreover, this model assumes a point-impact, 
zero coefficient of restitution (perfectly inelastic impact), impulses acting only at the impacting corner (impulses 
at the rotating corner are small compared to those at the impacting corner and are neglected), and sufficient 
friction to prevent sliding of the block during impact. 
 
Under the assumption of perfectly inelastic impact, there are only two possible response mechanisms following 
impact: (a) rocking about the impacting corner when the block re-uplifts (no bouncing), or (b) pure translation 
when the block’s rocking motion ceases after impact. The formulation of impact is divided into three phases: 
pre-impact, impact, and post-impact as illustrated schematically in Figure 3. In the following, a superscript “-”
refers to a pre-impact quantity and a superscript “+” to a post-impact quantity.  
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Figure 3: Impact from rocking about O  followed by (a) re-uplift about O′  and (b) termination of rocking 
 
 
3.1. Rocking continues after impact 
 
Consider the system at the instant when the block hits the moving base from rocking about O  and re-uplifts 
pivoting about the impacting corner, O′  (Figure 3a). As mentioned before, impact is accompanied by an 
instantaneous change in velocities, with the system displacements being unchanged. Therefore, the impact
analysis is reduced to the computation of the initial conditions for the post-impact motion, u+& and θ +& , given the 
position and the pre-impact velocities, u−&  and θ −& . 
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With regard to the block, the principle of linear impulse and momentum in the x  and z  direction states that 
 
 xF dt mX mX mu mx mu mx+ − + + − −= − = + − −∫ & & & & & &  (3.1)

 zF dt mZ mZ mz mz+ − + −= − = −∫ & & & &  (3.2)
 
in which xF dt∫  and zF dt∫  are the horizontal and vertical impulses (assumed to act at O′ ); gX u x x− − −= + +& & & & , 

gX u x x+ + += + +& & & &  and Z z− −=& & , Z z+ +=& &  are the absolute pre- and post-impact horizontal and vertical velocities 
of the mass center of the block, respectively. 
 
In addition, the principle of angular impulse and momentum states that  
 
 ( ) ( )z xb F dt h F dt I Iθ θ+ −− = −∫ ∫ & &  (3.3)
 
In Equations (3.1) and (3.2), the pre- and post-impact horizontal and vertical components of the relative 
translational velocity of the mass center can be expressed in terms of the angular velocity of the block as 
 
 , , ,x h z b x h z bθ θ θ θ− − − − + + + += = = = −      & & & && && &  (3.4)
 
Substituting Equations (3.4) into Equations (3.1) and (3.2) yields  
 
 xF dt mu mh mu mhθ θ+ + − −= + − −∫ & && &  (3.5)

 zF dt mb mbθ θ+ −= − −∫ & &  (3.6)
 
Equations (3.3), (3.5) and (3.6) constitute a set of three equations in four unknowns. Equivalently, these equations
can be combined in one equation (by eliminating the two impulses) in two unknowns (θ +& , u+& ): 
  
 ( ) ( )2 2 2 24 4 3 4 2 3b h hu h b huθ θ+ + − −+ + = − +& && &  (3.7)

in which for rectangular block the centroid mass moment of inertia was taken as ( )2 2 / 3I m b h= + .  

One additional equation is therefore required to uniquely determine the post-impact velocities θ +&  and u+& . By 
considering the system in its entirety during the impact, it can be stated that the horizontal impulse on the system 
is zero, resulting in the conservation of the system’s linear momentum in the horizontal direction. That is, 
 
 ( ) ( )b bm m u m m u mh mhθ θ+ − + −+ = + − +& && &  (3.8)
 
Combining Equations (3.7) and (3.8) gives the post-impact velocities as 
 

 ( ) ( )
( ) ( )

2

12

4 2 1
4 4 1

m m
m m

λ
θ θ β θ

λ
+ − −+ − +

= ≡
+ + +

& & &  (3.9)

and 

 
( ) ( ) 22

6
4 4 1

mhu u u
m m

θ β θ
λ

+ − − − −= + ≡ +
+ + +

& && & &  (3.10)

in which h bλ =  is the geometric aspect ratio and bm m m=  is the mass ratio. 
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Equations (3.9) and (3.10) give the post-impact velocities for impact from rocking about O  (realized when 

0θ <& ). Identical expressions are derived for the case of impact from rocking about 'O  (realized when 0θ >& ). 
 
It is worth noting that the coefficient of restitution e  as defined in classical impact theory, relates pre- to 
post-impact translational velocities normal to the impact surface, and hence it must not be confused with the 
coefficient of “angular restitution” 1β  defined in Equation (3.9), which relates the pre- to post-impact angular
velocities of the body. In the derivation presented herein, the coefficient of restitution e  enters in the expression 

´ ´O Oz ez+ −= −& &  which relates pre- to post-impact vertical relative velocities of the impacting corner ( 'O ). The 
assumption of perfectly inelastic impact is then justified by considering 0e = .  
 
From Equation (3.9), it can be seen that the coefficient of angular restitution, 1β , depends both on the geometric 
aspect ratio λ  and the mass ratio m . The variation of coefficient 1β  with the slenderness ratio λ is shown in 
Figure 4a for different values of the mass ratio m . The dependency of coefficient 1β  on the mass ratio m is 
seen to be weak, and practically diminishes for very slender blocks (e.g. for 6λ > ). The value 1 1β = , implying 
preservation of the magnitude of the angular velocity after impact, presents an upper bound for the coefficient of 
angular restitution. Evidently, the more slender a block, the larger the associated coefficient 1β  is. For the 
assumption of no-bouncing to be satisfied, the coefficient of angular restitution 1β  should have a positive value.
In such a case, the angular velocity of the block will maintain sign upon impact, implying switching pole of 
rotation from one corner to the other. This requires that 2( 1) ( 4)m mλ > + + .  
 
The coefficient associated with the reduction of the linear velocity of base, 2β , depends not only on the 
parameters λ  and m , but also on the absolute size of the block (in terms of its height). The normalized 
coefficient 2 2 hβ β≡  is plotted against the slenderness ratio λ  for different values of the mass ratio m in 
Figure 4b. Observe that the value of the coefficient 2β  decays rapidly with the slenderness ratio λ . Moreover, 
the influence of the mass ratio m  on the coefficient 2β  is much greater than that on the coefficient 1β . 
 

Slenderness ratio λ

0 1 2 3 4 5 6 7 8 9 10

C
oe

ff
ic

ie
nt

 β
1

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

m/mb = 0.5 
m/mb = 1.0 
m/mb = 1.5 
m/mb = 2.0 

Bouncing

Rocking

      Slenderness ratio λ
0 1 2 3 4 5 6 7 8 9 10

C
oe

ff
ic

ie
nt

 β
2/h

0.0

0.2

0.4

0.6

0.8

1.0

m/mb = 0.5
m/mb = 1.0 
m/mb = 1.5 
m/mb = 2.0 

 
     (a)                                                         (b) 

 
Figure 4: Variation of coefficients 1β  and 2β with slenderness ratio  

 
 
3.2. Rocking ceases after impact 
 
When rocking of the block on top of the moving base ceases, the system will attain a pure-translation mode 
(Figure 3b). In this case, the impact analysis is reduced to the computation of the post-impact translational 
velocity of the system, u+& , given the position and the pre-impact velocities, u−&  and θ −& . 
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By considering the system as a whole during impact, it can be stated that the horizontal impulse on the system is 
zero, resulting in the conservation of the system’s linear momentum in the horizontal direction. That is, 
 
 ( ) ( ) ( ) ( )b g g b g gm u x m u x h m u x m u xθ− − − + ++ + + + = + + +&& & & & & & & &  (3.11)

 
which upon rearranging terms becomes 
 

 
( ) 31

mhu u u
m

θ β θ+ − − − −= + ≡ +
+

& && & &  (3.12)

 
 
4. NUMERICAL EXAMPLE 
 
Numerical results are obtained through an ad hoc computational scheme developed to determine the response of
the system under horizontal ground excitation. The numerical integration of the equations of motion is pursued
in MATLAB through a state-space formulation (MATLAB 2006). In each time step, close attention is paid to the 
eventuality of transition from one pattern of motion to another and to the accurate evaluation of the initial 
conditions for the next pattern of oscillation, on the basis of the developed impact model. 
 
As an example, the response of the system to the N-S component of 1995 Kobe, Japan earthquake was 
computed. Results are presented here for a system of a homogeneous block with height 2 .0 mH = , base width

0.7 mB =  and mass 3800 kgm = , and a rigid base of mass 3800 kgbm =  (i.e. 1m = ). The linear 
isolation system considered has period 1.5 sT =  and viscous damping ratio 0.20ξ = . For the sake of 
comparison, results are also generated for the case of a non-isolated rigid block. Figure 5 depicts comparison of 
the computed response, in terms of the rotation and angular-velocity histories of the rigid block and the 
horizontal-displacement history of the base. It can be observed that the rocking response of the isolated block, in
terms of the rotation amplitude, the number of impacts and the overall duration of oscillation, is reduced. In 
comparison with the non-isolated block, which is on the verge of overturning (| /θ α |max 0 .95= ), the isolated 
block exhibits a maximum rotation amplitude | /θ α | max 0 .64= and as many as 5 times less impacts. 
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Figure 5: Response of the system to the N-S component of 1995 Kobe, Japan earthquake 
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5. CONCLUDING REMARKS 
 
The dynamic response of base-isolated block-like slender objects, such as statues, subjected to horizontal 
ground excitation is investigated. The model considered consists of a rigid block supported on a rigid base, 
beneath which the isolation system is placed. Under the assumption of sufficient friction to prevent sliding of
the block relative to the supporting base, when subjected to base excitation the system may exhibit two possible 
patterns of motion, each being governed by highly nonlinear differential equation(s). The system can be set in 
pure translation, in which the system as a whole oscillates horizontally (1-DOF response), or rocking, in which 
the rigid block pivots on its edges with respect to the horizontally-moving base (2-DOF response). The dynamic 
response of the system is strongly affected by the occurrence of impact between the block and the moving base,
as it can modify not only the energy but also the degrees of freedom of the system by virtue of the discontinuity
introduced in the response. Therefore, the critical role of impact in the dynamics of the system necessitates a
rigorous formulation of the impact problem. In this paper, a model governing impact from the rocking mode is
derived from first principles using classical impact theory. Numerical results are obtained via an ad hoc 
computational scheme developed to determine the response of the system under horizontal ground excitation. 
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