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ABSTRACT:  

 

In this paper, algorithms for extracting building attribute information from remotely sensed data are presented.  

In particular, a methodology for rapidly extracting spatial and structural information from a single high-

resolution satellite image, using rational polynomial coefficients (RPCs) as a camera replacement model is 

introduced. Geometric information defining satellite’s sensor orientation is used in conjunction with the RPC 

projection model to generate an accurate digital elevation model (DEM). Additionally, a methodology for 

inferring engineering attributes of the built-environment, i.e. structural type and occupancy type of buildings, 

from 3-D building models is formulated. A dataset collected for Southern California, USA, is used to train 

multinomial logistic regression models and establish inference rules in order to predict the regional engineering 

parameters of the buildings. Classification error and prediction power of these models are then presented in the 

paper and an example of the marginal probability distribution computed for a sample building is shown. 

 
KEYWORDS: Building Inventory, Remote Sensing, Rational Function Model, Height Extraction, 3-D 

Building Modeling, Statistical Modeling, Inference Rules, Multinomial Logistic Regression.  

 

 

1. INTRODUCTION 

 

When risk analysis is performed on a large region, one of the most daunting tasks is the compilation of regional 

building inventories. These inventories need to contain information on various building attributes such as 

geographic location (longitude and latitude), height or number of stories, footprint area, total square footage, 

structural class (construction type), usage or occupancy of buildings, age or year of construction, plan and 

elevation irregularities (re-entrant corners, setbacks and etc.), cladding type, roof shape, roof type and etc. 

Several of these attributes can directly be extracted from remotely sensed data -such as the data collected by 

aerial photography or satellite imagery. Height, footprint and other geometric features of buildings are among 

this group of attributes. There is however another set of attributes -that cannot directly be derived from remotely 

sensed data- which can be inferred using engineering or statistical rules. Structural type, occupancy type and age 

of structures are among the attributes of this group.  

This paper introduces a methodological approach to use a single satellite image and dynamic measurement to 

generate an accurate digital elevation model (DEM). In the dynamic measurement mode, a pair of pixels - in the 

image- is selected such that they represent corners of a building at ground level and their corresponding rooftop 

points. The proposed methodology uses Rational Function Model (RFM) as a replacement for the rigorous 

(physical) satellite sensor model to establish a transformation between 3-dimensional object-coordinates of 

buildings on the ground (latitude, longitude and height) and their corresponding 2-dimensinal image coordinates 

(row and column). In addition to extracting geometric attributes of the built-environment from satellite images, 

a methodology for inferring structural type and occupancy type of buildings from other signatures and attributes 

of an urban area such as the ones that can be derived from imagery is then presented in this paper. Since the 

response variables to be modeled (outputs of the model), i.e. structural type and occupancy type, as well as 

some of the independent variables (inputs to the model) such irregularity of buildings or roof type of structures 

are categorical data, the statistical model to be used should incorporate both categorical and quantitative data. 

Therefore, “multinomial logistic regression model” is chosen in order to establish the inference rules.    
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2. GEOMETRIC INFORMATION EXTRACTION FROM SATELLITE IMAGES  

 

This section introduces a methodological approach to use a single satellite image and dynamic measurement to 

generate an accurate digital elevation model (DEM). In dynamic measurement mode, a pair of pixels - on the 

image plane- is selected such that they represent the corner of a building at ground level and its corresponding 

rooftop point. 

2.1. Fundamentals 

Recent advances in high-resolution satellite imaging are extending application of commercial satellite imaging - 

such as those acquired by IKONOS, QuickBird, OrbView and SPOT5 - to accurate 3-D building modeling and 

geospatial information extraction. To support real-time calculations and provide an easy-to-use sensor model, 

many commercial high-resolution satellite image providers use Rational Function Model (RFM) as a 

replacement for their rigorous (physical) sensor model. RFM is a generalization of polynomial models that can 

be used to describe the image-to-ground relationship. RFM uses ratio of two polynomial functions to define the 

transformation between 3-dimensional coordinates of an object on the ground (latitude, longitude and height) 

and its corresponding 2-dimensinal image coordinates (row and column). For a given image, RFM can be 

expressed as: 
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where rn and cn are the row and column indices of pixels in the image, respectively; n,n and hn are geodetic 

latitude, geodetic longitude and height above the ellipsoid, respectively.  

Polynomials fi (i=1,2,3,4) in Equation 1, have the general form of: 
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The ratio of first-order terms in RFM usually compensates for distortions caused by optical projection, second-

order terms can be used to correct for earth curvature, atmospheric refraction and lens distortion while third-

order terms can model other sources of noise and distortions [1].  To determine longitude, latitude and height of 

a structure, one needs to measure image coordinates of corner of a building at ground level and its 

corresponding rooftop coordinates. For each conjugate pair obtained in this dynamic measurement, the 

following set of equations can be obtained: 
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where rground, cground, rroof and croof are the measured (normalized) image coordinates of a ground-point and its 

corresponding rooftop-point on the image (conjugate pair), respectively; , h1 and h2 are the unknown 

(normalized) object space coordinates. 

 

2.2. Image Acquisition Geometry and Height Metrology 

Approximate image acquisition geometry and satellite orientation can be described by sensor’s elevation and 

azimuth angles. Sensor’s elevation angle is the angle form the horizon up to the satellite [2]. The projection of 

sensor’s line of sight to the area-of-interest (AOI) onto the horizontal plane measured clockwise defines the 

sensor’s azimuth [2] as shown in Figure 1. 

By knowing a sensor’s collection azimuth () and measuring the image coordinates for the corner of a building 

at ground level, (rground, cground ), and its corresponding rooftop-point coordinates, (rroof , croof ), it is possible to 

calculate height of a building through trigonometric relationship as described in Equation 4 and shown in  

Figure 2.  

22  where,  
cos

)c(c)r(rGSDH
(ββ

H
 H roofgroundroofground

*
*

                                       (4) 

where GSD is ground sample distance at the viewing angle H is the physical height of a building and H
*
 is the 

measured height of a building on the image plane.  
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2.3. 3-D Reconstruction Algorithm 

 

 

 

 

 

 

 

 
 

A system of homogeneous nonlinear over-determined equations can be obtained by adding the geometric 

constraint for height, derived in Equation 4, to the set of equations introduced by Equation 3. The unknown 

variables are geodetic longitude, geodetic latitude, height of ground-point above the geoid and height of rooftop-

point above the geoid, (, , h1, h2), as presented in Equation 5: 
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The above system of nonlinear equations can be solved using the Trust-Region Dogleg Method [3] & [4].  To do 

so, a linear system of equations is solved to find the search direction, and trust-region techniques [5] are used to 

improve the robustness of the algorithm when the starting point is far from the solution or in cases where 

Jacobian of design matrix (Equation 5) is singular. The starting point  xo = (, , h1
*
, h2

*
), used in the iterative 

solution of Equation 5, can be obtained by linearizing Equation 3 considering only the first-order terms in the 

numerator and denominator as expressed in Equations 6 and 7. Singular Value Decomposition (SVD) of matrix 

A can be used if A becomes singular. 
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Figure 1. Image Acquisition Geometry Figure 2. Relationship between real height of a building   

                 And the measured height on the image plane 
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2.4. Measurement Error 

The amount of error introduced by an operator in the process of selecting ground-points and rooftop-points 

affects the accuracy of differential-height estimation in Equation 4 and, therefore, the overall accuracy in 

determining longitude, latitude and height. In this section, only the direct effect of selection-error on height is 

addressed. Figure 3 shows the relationship between rooftop selection-error and its corresponding error in height. 

Considering two independent measurements in determining the location of ground-point and rooftop-point, the 

differential-height error can be calculated as shown below:  

PixelH   )sec(2                                                                (8) 

 

 

 

 

 

 

 
 

Figure 3. Pixel selection and its corresponding height estimation error 

 

3. APPLICATION OF STATISTICAL INFERENCING TECHNIQUES TO BUILDING INVENTORY 

COMPILATION 

In order to infer the structural- and occupancy-type of buildings from geometric and spatial attributes of the 

built-environment, a statistical framework which incorporates both quantitative and qualitative variables should 

be utilized. In this section, application of multinomial logistic regression models in inferring categorical 

attributes of urban areas is investigated. Models developed in this section are then used to establish a set of 

inference rules using training datasets. 

3.1. Fundamentals 

Multinomial logistic regression models, use multinomial probability distribution to model probability of a 

response variable, from the i
th
 observation, falling into the k

th
 category given a set of explanatory variables as 

shown below: 
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where (xi , yi) is the i
th
 observation such that xi = (xi1, xi2, …, xip) is a vector of p explanatory variables and yi is 

the corresponding response variable. ik is the probability of i
th
 response variable falling in the k

th
 category. 

It can be seen that for the i
th
 observation, the response variable with K categories can be treated as a multinomial 

variable with probabilities  iKii  ,...,, 21
 and the constraint that 1

1
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K

k ik . To impose the constraint that 

fitted probabilities on the K categories should sum to one, one of the categories should arbitrary be selected as 

the base category or the control group. This category can be the first, the last or any other. Choosing the last 

category as the baseline category, the log-odds or “logarithm of the ratio between logit model of the k
th
 category 

and the baseline category” for p explanatory variables can be expressed as shown in Equation 10. 
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where k and jk's are the logistic regression coefficients of the log-odds of the k
th
 category relative to the base 

category. 

 

Using Equation 10, probability of i
th
 observation falling in the k

th
 category can then be expressed as below: 
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where ik is the probability of i
th
 observation falling in the k

th
 category. 

Parameter estimation for log-odds of explanatory variables is done by maximizing the expectation of log-

likelihood of each variable. For each log-odds, estimated parameters )ˆ(β  as well as their standard error )(
̂

  

can be calculated. The significance of each parameter in the model can be assessed using the Wlad statistics. 

The Z-value of Wald statistics for each parameter can be calculated by computing the ratio of estimated 

parameters and their standard error term as shown in Equation 13.  
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where Z is the Wald statistics of the estimated parameter β̂ .The standard error of parameter β̂  is shown by 


 ˆ . 

The computed Z-value has a normal distribution and can be used to judge the significance of the coefficient. It 

can be shown that for large sample sizes, Z
2
 has a chi-square distribution with one degree of freedom. To judge 

the overall suitability and parsimony of a model, the Akaike Information Criterion (AIC) is used. In the context 

of logistic models presented in this paper, the AIC can be defined as the sum of residual deviance of the model 

and the number of regression coefficients as shown in Equation 14.   

nLAIC 2)(2 


β                                                                                                                                               (14) 

where )(


βL is the maximum log-likelihood of the fitted model and n denotes total number of variables in the 

model.  

Smaller values of AIC indicate a better fit to the data. AIC can also be used as a comparison tool when it comes 

to model selection (as shown later in this paper in Table 2).  

 

3.2. Datasets and Model Development 

Detailed inventory data of eighteen census tracts within the Orange County (Southern California, USA) is used 

as the training dataset in this paper. The inventory database of Orange County is collected at the building level 

with attributes extracted from remotely sensed data -as discussed in section 2- as well as some ancillary 

attributes extracted from tax assessor database of the county. In this dataset, height, square footage, 

configuration irregularities as well as rooftop types of 1947 buildings are extracted from QuickBird imagery of 

the area, while structural type, occupancy type and year construction of buildings are extracted from tax assessor 

databases.   

In order to identify all the possible models that can be created using this dataset, the most primitive combination 

of attributes, also known as the baseline model, should first be identified. Additional explanatory variables then 

will be added to the baseline model one at a time. The most basic model to be considered is the one associated 

with four explanatory variables; i.e. the height, square footage, irregularity and rooftop type of buildings. This 

choice of variables is mainly because of the fact that height, footprint area of structures, irregularity and rooftop 

type are the ones which can directly be extracted from remotely sensed data when one constructs a 3-D city 

model of the area. Depending upon availability of ancillary data, year of construction (age of buildings), 
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occupancy type or structural type can be included in the model in the later steps. Table 1 summarizes different 

models which can be created using the training dataset. 

 

Table 1 Summary of models created using the Southern CA training dataset   

Model 

ID 

Response 

Variable 

Explanatory Variable Included in the Model 

Variable #1 Variable #2 Variable #3 Variable #4 Variable#5 Variable#6 
 

   
 

   

Model I
*
 Str. Type Height (ft) Area (ft

2
)  Configuration Roof  - - 

Model II Str. Type Height (ft) Area (ft
2
)  Configuration Roof Occ. Type - 

Model III
 

Str. Type Height (ft) Area (ft
2
)  Configuration Roof Occ. Type Age 

        

Model IV
*
 Occ. Type Height (ft) Area (ft

2
)  Configuration Roof - - 

Model V
 

Occ. Type Height (ft) Area (ft
2
)  Configuration Roof Str. Type - 

Model VI Occ. Type Height (ft) Area (ft
2
)  Configuration Roof Str. Type Age 

*
 Baseline Model 

3.3. Measurement Error 

The training dataset is used to compute the parameters of multinomial logistic models, fitted to each set of 

variables defined in Table 1. In order to calculate the overall classification error of a multinomial logistic model, 

the corresponding classification table for the response variable using prediction rules defined by the model 

should be calculated. The diagonal elements of this table represent the number of correctly classified 

observations. Classification error can then be calculated by computing the ratio between sum of the diagonal 

elements of the table and total number of elements in the table as shown in Equation 15.  

 
 Tsum

Tdiagsum )(
1                                                                                                                                            (15) 

where  is the classification error or misclassification rate, in table T and diag(.) refers to the diagonal elements 

of the table. 

Table 2 summarizes the AIC, the degrees of freedom df, for estimating parameters of each model and the overall 

classification error of each of the models, respectively.  

 

Table 2 Summary of AIC, degrees of freedom (df) and the overall classification error of models used in    

              building the multinomial logistic regression models from the training dataset 

Model 

ID 

Response 

Variable 

Explanatory Variable AIC df   Classification 

#1 #2 #3 #4 #5 #6   Error 
 

          

Model I
*
 Str. Type H A Config. Roof - - 2663 35 21.98% 

Model II Str. Type H A Config. Roof Occ. - 1827 50 17.36% 

Model III
 

Str. Type H A Config. Roof Occ.  Age 1771 55 16.18% 
           

Model IV
*
 Occ. Type H A Config. Roof - - 2984 21 29.74% 

Model V
 

Occ. Type H A Config. Roof Str. - 2062 36 18.90% 

Model VI Occ. Type H A Config. Roof Str. Age 2064 39 18.90% 
*
 Baseline model 

 

3.4. Results and Examples 

The computed multinomial logistic model in each case (in Table 2) can be used for classification purposes by 

defining a set of decision rules. For instance, for an input attribute vector -consisted of p independent values- to 

the model, i.e. x = (x1, x2,…, xp), probability of the response falling into each of the K categories can be 

computed as =  K ,...,, 21  using Equations11 and 12. The category corresponding to the highest 

probability in  can be selected as the class to which the input attribute vector belongs. Furthermore, a 

minimum probability threshold can be chosen such that if the highest probability in   is below that threshold, 
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the classification results in an “unclassified” status. In cases in which the probability difference between two 

classes is not significant, a tie assignment between class-membership will result and therefore, a set of rules 

should be defined in order to assign the response variable to a desirable class. It should be noted that in many 

cases decision rules depend on the nature of the input variables to the model as well the resulted response 

variable, and hence they differ from one problem to the other. Therefore, careful consideration should be given 

while compiling the decision rules for a specific problem. 

Table 3 shows the result of parameter estimation for a model which uses height classes (low: 1-3 stories, 

medium: 4-7 stories and high: 15+ stories) and total square footage of a building to infer the construction type. 

Construction classes to be inferred from the mode are: Concrete (C), Steel (S), Concrete/Steel (C/S), Reinforced 

Masonry (RM), Un-Reinforced Masonry (URM) and Wood (W). The base-category (also known as control 

group) for explanatory variable in this table is the structural class type "C", i.e. the concrete class. 

 

Table 3  Log-odds parameters of Model I (from Table 1) 

Log-odds 

 

Intercept 

 

H
* 

(High) 

H 

(Medium) 

H 

(Low) 

Average 

Area 

C/S 

 

Coefficients -2.216 - -0.324 -0.572 -1.3E-05 

Std. Error 5.2E-11 - 5.3E-12 4.3E-11 2.2E-06 

RM 

 

Coefficients -0.574 - 0.337 -0.355 -1.2E-05 

Std. Error 1.7E-11 - 2.7E-12 1.3E-11 8.3E-07 

S 

 

Coefficients -1.154 - -0.130 -1.502 8.4E-06 

Std. Error 5.3E-12 - 2.2E-12 2.6E-12 4.1E-07 

URM 

 

Coefficients -0.401 - 0.382 -0.388 -1.7E-05 

Std. Error 2.5E-11 - 3.5E-12 2.0E-11 9.7E-07 

W 

 

Coefficients -8.096 - 11.408 9.099 -4.9E-05 

Std. Error 3.6E-11 - 5.9E-12 3.1E-11 8.7E-07 
*
 Base-category Variable 

 

In order to assign a class to an independent observation, the probability vector should first be computed. The 

category corresponding to the highest probability in is then assigned to the observation. As an example let's 

assume the structural type of a low-rise building with average square footage of 2,176 ft
2
 in Southern California 

is to be predicted. Using the estimated parameters for the corresponding model, shown in Table 3, and using 

structural class C, i.e. concrete, as the base-category for the response variable, the log-odds ratios can be 

calculated as shown in Equation 16.   


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

                                                                                  (16) 

where x1 and x2 are dichotomous dummy variables corresponding to height of the structure as defined in Table 

4. x3, is a quantitative variable corresponding to average square footage of the structure in ft
2
. 

 

Table 4  Dummy variables x1 and x2 as indicators of  height in Equation 16 

Height (High-rise) 

Height (Medium-rise) 

Height (Low-rise) 

0 

1 

0 

0 

0 

1 
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Therefore, the marginal mass-probability density of the observation falling into different response categories can 

be computed, using x1 = 0, x2 = 1 and x3 = 2176, as: 

 }556.0  ,099.0  ,016.0  ,087.0  ,014.0  ,227.0{ /  WURMSRMSCCΠ    

This means that there is 55.6% chance that the construction class of the building-of-interest is wood; there is 

22.7% chance that it is concrete; there is about 10% chance that the building is unreinforced masonry and etc.  It 

can be seen that the last category, i.e. W, in the probability vector has the highest value (55.6%) and therefore, 

in absence of any other information such as age or occupancy type, the predicted structural type of a low-rise 

building in Southern California with an average square footage of 2,176 ft
2 

is “wood frame”. This class 

prediction is in agreement with realizations of the training dataset. 

 

3. CONCLUSIONS  

A cost effective methodology for extracting spatial information of the built-environment, i.e. height, footprint, 

shape configuration and etc., using single optical satellite images is presented in this paper. This information can 

be used to rapidly compile building inventory information for hard-to-reach and remote areas for which 

minimum or no data is available. 

Furthermore, the multinomial logistic regression model presented in this paper provides the means to compute 

quantitative measures of marginal occupancy and building class-membership probabilities for categorical 

attributes associated with structures. This information can be used to augment probabilistic risk assessment 

models by providing a measure of uncertainty for construction and occupancy classes of the inventory-at-risk 

for a particular region, when the full distribution of construction and occupancy is not available. 
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