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ABSTRACT : 

A mathematical model of any real system is always just an approximation of the true, physical reality of the 
system dynamics. There are always uncertainties in the system modeling. This paper outlines a general
approach to the design of an H∞ control of an Active Mass Damper (AMD) for vibration reduction of a
building with mass and stiffness uncertainties. Linear fractional transformation (LFT) is introduced in this
paper for uncertainties modeling. To facilitate computation of the H∞ controller, an efficient solution 
procedure based on Linear Matrix Inequalities (LMI), or the so-called LMI problem, is employed. The 
controller uses the acceleration signal for feedback. A two-story building model with an AMD is used to test 
the designed H∞ controller. Earthquake ground motion is introduced by a shaking table. A pair of diagonal
shape memory alloy (SMA) wire braces are installed in the first floor to introduce stiffness uncertainty to the
structure by controlling the temperature of the SMA wire brace. Masses are added to the structure to introduce 
mass uncertainty. Experiments were conducted and the results validate the effectiveness of the proposed H∞
controller in dealing with stiffness and mass uncertainties. 
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1. INTRODUCTION  
 
The structural control system is commonly classified by its device type resulting in three general control types: 
passive, active and semi-active. Active control systems have the ability to adapt to different loading conditions
and to control vibration modes of the structure (Housner et al. 1997). The most commonly investigated active 
control devices is Active Mass Damper (AMD) which is developed by introducing an active controlled actuator 
in Tuned Mass Damper (TMD). In 1989, the Kyobashi Seiwa Building in Tokyo, Japan was constructed using 
an AMD making it the first building in the world to use active structural (Kobori et al. 1991). However, there
are still some practical and important problems to be solved such as system instability due to structural
modeling error. 
 
The H∞ approach is advantageous since it can ad-dress both attenuation of disturbances and perturbation of
unstructured parameters (Chen and Patton 1999). Doyle et al. (1989) developed state-space formulas for all 
controllers that solve a standard H∞ problem, thereby making a significant breakthrough in H∞ control. H∞
design methods may be found in many references, such as Kwakernaak (1987), Doyle et al. (1989), Wang et al.
(1995a, 195b, 1998), and Zhou et al. (1996). H∞ control methods provide controllers with robustness to 
external disturbances and system parameter uncertainty, such as modeling errors and system parameter
perturbations. Hence, these controllers can guarantee stability and optimized vibration suppression performance
despite in-sufficient or inaccurate knowledge of the structural system parameters. Recent formulations of the H
∞ control problem in terms of linear matrix inequality (LMI) allow computationally efficient and systematic
design of robust controllers. 
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This paper presents the application of the H∞ control theory to designing controllers for structures with AMD
taking into account of mass and stiffness uncertainties. For synthesizing the H∞ controller we use a linear 
matrix inequality (LMI) technique (Iwasaki and Skelton 1994; Gahinet and Apkarian 1994). More precisely, the
H∞ control problem can be formulated as a minimization problem of a non-convex function, subject to convex 
constraints expressed by a system of LMIs. The controller uses the acceleration signal for feedbacks. A 
two-story building model with an AMD is used to test the designed H∞ controller on a shaking table. To study 
the robust-ness of the H∞ controller, a diagonal shape memory alloy (SMA) wire brace is installed in the first
floor to adjust the stiffness of the structure when the SMA is heated. Masses can be added to the structure to 
alter its mass matrix. Experiments are conducted to validate the effectiveness of the proposed H∞ controller in 
dealing with stiffness and mass uncertain-ties.  
 
 
2. MODELING OF AMD CONTROL SYSTEMS WITH UNCERTAINTIES 
 
A building structure implemented with an AMD and subjected to earthquake can be described as: 

 
 ( ) ( )s s s s s s s gx t u tx FM X + C X + K X = -M E + E  (2.1) 

 
where sM , sC  and sK  are respectively mass, damping and stiffness matrix of the system. sX  is 
displacement vector of the system. ( )u t  is the control force generated by actuator. gx  is the acceleration of 
ground. xΕ  and FE  are coefficient matrices with appropriate dimensions. 
 
In a realistic AMD control system, the three physical parameters of Ms, Cs and Ks in equation (2.1) are not 
known exactly. However, they can be assumed that their values are within certain known intervals. That is 
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 (2.2) 

 
where M , C  and K  are so called nominal values of sM , sC  and sK . Mδ , Cδ  and Kδ  and MP , 

CP  and KP  represent the possible perturbations on those parameters. MP , CP  and KP  represent the
maximum discrepancy between the actual model and mathematical ones. Matrices Mδ , Cδ  and Kδ  are 
diagonal with uncertain values, however, their values belong to [-1, 1]. I is unity matrix. 
 
We note that the quality of 1

s
−M  can be represented as a linear fractional transformation (LFT) in Mδ  

 
 1 1 1 1 ( , )s M M M M U M MF− − − −= − =M M M P δ (I + P δ ) I M δ  (2.3) 

 
Similarly, the parameter s C CC = (I + P δ )C  may be represented as an upper LFT in Cδ  
 

 ( , )s U C CF=C M δ  (2.4) 
 

with CM
⎡ ⎤

= ⎢ ⎥
⎣ ⎦C

0 C
P C

 and the parameter K KK = (I + P δ )K  may be represented as an upper LFT in Kδ  

 ( , )s U K KF=K M δ  (2.5) 
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Then, the input/output dynamics of the control system which takes into account the uncertainty of parameters 
can be denoted by G. The state space representation of G is 
 

  (2.6) 

 
Let ( , , )M C Kdiag δ δ δΔ = , [ , , ]M C Ku u u uΔ =  and [ , , ]M C Ky y y yΔ = . Then, the effects of uncertain 
structural parameters on the system G can be expressed by  
 

 u yΔ Δ= Δ ⋅  (2.7) 
 
 

3. FORMULATION OF LMI BASED H∞ CONTROL FOR AMD-STRUCTURE SYSTEM 
 
In this section, we will transform the computation of optimal controller for AMD-structure system into a 
general H∞ control frame. The weighting functions are used to the system performance. The advantages of 
using weighted functions are obvious in controller design. First, some components of a vector signal are usually
more important than others. Second, each component of the signal may not be measured in the same units.
Also, we might be primarily interested in rejecting errors in a certain frequency range. Hence, some 
frequency-dependent weights must be chosen to get high performance controller (Zhou et al. 1996). 
 
A detailed block diagram representation of the system is depicted in Figure 2. The frequency domain weighted 
function Wg shapes the spectral content of the earthquake excitation. Wv is used to weight the measurement
noise v. The block Tz is a constant matrix that dictates the regulated response transformed from the
measurement vector. The matrix weighting function W1 and W2 are frequency dependent, with W1 weighting 
regulated response and W2 weighting the control signal. K is the controller to be designed which can generate a 
control signal u according to the measured response y. The input excitation w consists of earthquake excitation 

gx  and measurement noise v. The output z comprises frequency weighted regulated response and control 
signal. The regulated response denotes the quantities of the design interest which can be floor acceleration, 
floor displacement or base shear force etc. The rectangle with dash line in Figure 2 represents the augmented 
system model GA.  
 
H∞ control methods provide controllers with robustness to external disturbances and system parameter
uncertainty, such as modeling errors and system parameter perturbations. Hence, these controllers can guarantee 
stability and optimized vibration suppression performance despite insufficient or inaccurate knowledge of the
structural system parameters. The formulations of the H∞ control problem in terms of Linear Matrix Inequality 
(LMI), which allows computationally efficient and systematic design of robust controllers (Skelton et al. 1998), 
is used here. Using the linear fractional transformation (LFT), the vibration control of structures with AMD can 
be represented by  

 

 

P P P p p

z p z z

y p y

x = A x + B u + D w

z = C x + B u + D w

y = C x + D w
 (3.1) 

 
where xP is state variables of augmented system model P. Let the transfer matrix from w  to z be denoted by 
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zwT . The H∞ norm of the control system is defined as sup ( ( ))zw w zwT T jσ ω
∞
=  and the H∞ control problem 

here is to design a controller K to make the closed-loop system stable and zwT
∞

 minimal. The LMI 

formulation of the H∞ control problem results in an efficient optimization method that can handle large-scale 
systems. LMI optimization problems are convex, leading to computationally efficient global optimal solutions. 
Consider the system with order nc that has the state space representation of (3.1). The following theorem is 
useful to design a controller K of order nK which is less than or equal to nc with the following state space 
representation, 

 

 c c c c

c c c

x = A x + B y
u = C x + D y

 (3.2) 

 
Where xc is the state vector of controller, u is the control signal, y is the output of the generalized plant shown 
in equation (3.1), Ac. Bc, Cc and Dc are real matrices of appropriate dimensions. 
Assembling the equations (3.1) and (3.2) yields to 
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 (3.3) 

 
or simply 

 
( ) ( ) ( )
( ) ) ( )

cl cl

cl cl
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 (3.4) 

 
The notation to be used as follows: Given a real matrix N, the orthogonal complement ⊥N  is defined as the 
(possibly non-unique) matrix with maximum row rank that satisfies 0=⊥NN  and 0>⊥⊥NN  (Skelton et 
al. 1998). Hence, ⊥N  can be computed from the singular value decomposition of N as follows: TTUN 2=⊥

where T is an arbitrary nonsingular matrix and U2 is defined from the singular value decomposition on N 
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To design an H∞ controller using LMI for system expressed by equation (3.4), one must find a matrix pair 
( , )P PX Y  with dimension of P Pn n×  such that the following statements are satisfied for a given scalar 

0γ > : 
 

 0P
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One can compute a matrix factor pcY  and 0c >Y  according to  ( , )P PX Y  such that 
 

 2 1T
pc c pc P Pγ−⊥ −= −Y Y Y Y X  (3.9) 

 
and construct Y and X as 

 

 P pc
T
pc c

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Y Y
Y

Y Y , 2 1γ −=X Y  (3.10) 

 
Then, the controller is give by 

 
 1 1 1/ 2 1/ 2( ) ( )T T T T− − −= − +K R Γ ΦΛ ΛΦΛ S L ΛΦΛ  (3.11) 

 
The proof of equations (3.11) can be found in the reference (Skelton et al., 1998).  
 
 
4. SHAKING TABLE TEST OF A FLEXIBLE STRUCTURE WITH AMD 
 
To demonstrate the applicability of the robust H∞ controller presented here, shaking table test of a small-scale 
two-story structure with AMD as shown in Figure 3 1 was conducted in the Smart Materials and Smart 
Structures Laboratory at University of Houston. The structural inter-story height is 490mm. The first floor mass 
is 1.16 kg and the second one is 1.38 kg. The structure has the natural frequencies of 1.4 Hz and 4.4 Hz. A 
moving cart driven by a DC motor is installed on the top of structure acting as an AMD control device. The
moving cart is driven by a brushless DC motor sliding along a geared rack, which generates control force to the 
structure. The maximum stroke of the AMD is ±9.5 cm with a total moving mass of 0.65 kg. 
 
The scheme of control system is shown in Figure 42. The structure is controlled by the miniature AMD when it
vibrates subjected to shaking table movement excitation. The accelerometer feedback signals on both stories are 
transferred into computer after amplification and A/D converter. The computer produces a control signal 
according the designed control algorithm and feed back signals. The control signal applies on AMD device and 
generates control force after D/A converter and amplification. The accelerometers used here are manufactured
by Quanser consulting Inc and produce an output of ±5 volts with a range of ±5g. Two Universal Power 
Module are used here as power amplifiers, one of which is used to power shaking table and accept the sensor 
signals and another one is used to power the AMD. The data acquisition and control board used to collect data 
and drive the power amplifier is a Q8 extended terminal board manufactured by Quanser Consulting Inc. 
 
To guarantee the safety of structure, the regulated output z1 in Figure 2 is selected to be the displacement of the 
second floor. The weighted function Wg  is chosen as the square root of Kanai-Tajimi spectrum to reflect the 
frequency content of earthquake 

 

 
2
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 (4.1) 

 
The parameters of Kanai-Tajimi spectrum in this paper are S0=0.09, 0.65gζ = , 18.65gω = . For the 
regulated response z1, we are only interested in low frequency response. Hence, the weighted function W1 is 
selected as 
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Figure 3 1 experimental set-up             Figure 4 2 Scheme of AMD system 

 
The weighted function W2 and Wv are set to be 45 10−×  and 1 which means that control signal and noise are 
weighted in whole frequency region. A 9th order H∞ controller is acquired using MATLAB Robust Control
Toolbox and it is reduced to 6th order by balanced truncation method to facilitate implementation. 
 
To verify the effectiveness of the designed robust H∞ controller, the shaking table test of two-story building 
model with AMD introduced previously was conducted. The El Centro earthquake record in 1940 with peak
value scaled to be 0.2g was input to the shaking table as excitation. The time history of accelerations and
displacements for both stories are shown from Figure 5 3 to Figure 86. It can be seen from these figures that the 
structural responses, especially the displacements are reduced greatly. The reduction ratios of displacement on 
first floor and second floor are 51.27% and 62.69%, respectively. 
 

            
Figure 5 3 Acceleration history of the first floor     Figure 6 4 Acceleration history of the second floor 

 
To experimentally investigate the robustness of designed controller, a diagonal shape memory alloy (SMA) 
wire brace is installed in the first floor to adjust the stiffness of the structure when the SMA is heated. The 
building model on the shaking table is excited by the same scaled El Centro earthquake with the temperature of 
SMA wire kept to be 30, 40, 50, 60 and 70℃, respectively. The displacement reduction ratio of second floor 
with the temperature of SMA wire is shown in Figure 97. It can be seen that the displacement reduction ratio of 
second floor keeps a high value though the stiffness of the structure varied with temperature of SMA wire, 
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which verifies the robustness of designed controller on stiffness uncertainties. 
 
Mass uncertainties are introduced here by adding additional masses on each floor. The following four cases are 
considered in the experiment to investigate the influence of mass uncertainties. Case 1: Structural vibration
control without additional masses; Case 2: Structural vibration control with 1kg (86% of the first floor mass)
additional mass on the first floor; Case 3: Structural vibration control with 1kg (72% of the second floor mass) 
additional mass on the second floor; Case 4: Structural vibration control with 0.5kg (43% of the first and 36%
of the second floor mass) additional mass on both floors. 
 

         
Figure 7 5 Displacement history of the first floor    Figure 8 6 Displacement history of the second floor 

 
The building model on shaking table is still excited by the same scaled El Centro and second floor displacement 
reduction ratio of four cases is shown in Figure 108. It can be seen that the displacement reduction ratio of 
second floor is nearly unchanged though the structural mass varies a lot, which verifies the robustness of
designed controller on mass uncertainties. 

          
Figure 9 7 Displacement reduction ratio with           Figure 10 8 Displacement reduction ratio 

the temperature of SMA wire                        with mass uncertainties 
 
 
5. CONCLUSIONS 
 
This paper outlines a general approach to the design of an H∞ controller for Active Mass Damper (AMD) 
control system. The uncertainties of systems are taken into account by Linear fractional transformation (LFT). 
To facilitate computation of the H∞  controller, an efficient solution procedure based on linear matrix
inequalities (LMI), the so-called LMI problem, is employed. A controller is designed for a two-story building 
model with an AMD by LMI method which uses the acceleration signal as feedbacks. The shaking table test of
the two-story building model was conducted with 1940 El Centro earthquake record as excitation. The results 
show that the structural responses are reduced significantly. The stiffness uncertainties are introduced by install 
a diagonal shape memory alloy (SMA) wire brace in the first floor. When the SMA wire is heated, it can adjust 
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the stiffness of the structure. The mass uncertainties are introduced by adding additional masses to the structure. 
The results show that the displacement reduction ratio of second floor keeps a high level with the changes of 
structural stiffness and mass. The experiment results verify that the designed control has a good robustness on 
stiffness and mass uncertainties. 
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Table 3.1 Data for beams under dynamic loading  
Material  Deflection x Deflection y 
Concrete beams 0.234mm  0.523mm  
Steel beam s  0.197mm  0.432mm  
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Illustrations are to be centered, with the reference and caption printed below the figure. The lettering used in the
illustrations should not be too small. Illustrations are to be referred to as figures, and must be quoted in the text. 
One blank line should be left between the figure caption and the next paragraph. Please ensure that all figures
are of the highest quality. Keep figures as simple as possible. Avoid excessive notes. Photographs must have a 
resolution of at least 300 dpi. You are advised to check how colour illustrations show in black/white for
reproduction in the printed proceedings.  

 
Figure 1 Load versus axial strain curves  

 
 
4. EQUATIONS  
 
Leave one blank line above and also below any equation. Equations are to be centered, and the equation
reference right justified. Equation references are in the form of “chapter number. equation number” and should
be referred to in the text in the form Eqn. 4.1.  

 
 X = 2y + 1 (4.1) 

 
Equations should be typed and all symbols should be explained within the text of your manuscript.  
Authors may prefer to include a separate section detailing all nomenclature. 
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