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ABSTRACT : 
The availability of methods for damage identification of civil infrastructures under sever earthquake is crucial 
for safety assessment and repair decision of structures post earthquake. Two novel damage identification 
methods based on wavelet transform are proposed in this paper. In the first method, the structural seismic 
responses are dealt with by the continuous wavelet transform directly. The time-varying frequency of structure 
is identified, and then the occurrence time and degree of structural damage can be observed. However, this 
method can not work well for multi-degree of freedom system because of the complicated relationship between 
damage and structural frequencies. Then the second method is presented subsequently to identify nonlinear 
hysteresis curves of structures during strong earthquake. By this method, not only the location but the degree of 
structural damage can be identified. This method alternately uses the extended Kalman filter (EKF) and wavelet 
(W) multiresolution analysis. Then it is entitled as the EKF-W method. In each time step, the full structural 
states are first estimated by using the EKF based on limited observations; then the tangent stiffness as well as 
hysteresis curves of structures is identified by using the wavelet multiresolution analysis based on the estimated 
full states. Simulation results from two structures are presented to illustrate the power and efficiency of the 
proposed two methods. 
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1. INTRODUCTION  
 
It is very important to assess damage of civil infrastructures after earthquake accurately and as soon as possible. 
Because the assessment provides reference for reinforcement and repair of these structures. Until now, damage 
assessment of civil structures post earthquake is mainly conducted through visual inspection and some other 
nondestructive detect instruments. These methods can not provide overall assessment on structural damage and 
can not detect damage inside structural elements. So a better strategy is to identify structural damage by 
analyzing structural seismic responses measured by sensors on structures. However, damage identification based 
on structural seismic responses suffers from two problems: (1) it is impractical to measure the structural 
responses on every DDOF for real buildings; and (2) structural characteristics are time variant and nonlinear. 
Therefore, some traditional damage identification methods for linear system and those methods need structural 
measurements on total DDOFs can work well no longer.  
 
Wavelet transform has the ability to provide information simultaneously in time and frequency with adaptive 
windows. Then it offers promising tools for identifying structural time varying characteristics under intensive 
earthquake. Damage identification methods based on wavelet transform can be divided into three categories: (1) 
detecting damage occurrence by the change of wavelet transform coefficients [1-3]; (2) identifying time varying 
modal parameters by extracting ridge of wavelet scalograms [4-5]; and (3) identifying structural nonlinear 
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hysteresis curves by using wavelet multiresolution analysis [6]. However, the modal parameters identification for 
hysteretic nonlinear system under earthquake excitation is seldom discussed. Moreover, structural seismic 
responses on total DDOFs are needed for hysteresis curves identification in literature [6], which is impractical. 
 
In this paper, two novel damage identification methods based on wavelet transform are proposed. In the first 
method, the structural seismic responses are dealt with by the continuous wavelet transform. The time-varying 
frequency of structure is identified, and then the occurrence time and degree of structural damage can be 
observed. However, this method can not work well for multi-degree of freedom system because of the 
complicated relationship between damage and structural frequencies. Then the second method is presented 
subsequently to identify nonlinear hysteresis curves of structures during strong earthquake. By this method, not 
only the location but the degree of structural damage can be identified. This method alternately uses the 
extended Kalman filter (EKF) and wavelet (W) multiresolution analysis. Then it is entitled as the EKF-W 
method. In each time step, the full structural states are first estimated by using the EKF based on limited 
observations; then the tangent stiffness as well as hysteresis curves of structures is identified by using the 
wavelet multiresolution analysis based on the estimated full states. Simulation results from two structures are 
presented to illustrate the power and efficiency of the proposed two methods. 
 
 
2. METHOD ONE: TIME VARYING FREQUENCY IDENTIFICATION BASED ON WAVELET 
TRANSFORM 
 
It is generally recognized that the strength and stiffness of a civil structure will decrease under an intensive 
earthquake and that the force-displacement relationship of structural members will exhibit hysteretic nonlinear 
characteristics. In such cases, the frequencies of structures are time variant and the variation of frequency is 
associated with the level of nonlinearity in the system. So the nonlinearity and the damage of a system can be 
characterized by its time varying frequency. As a powerful time-frequency analysis tool, the wavelet transform 
has been extensively employed by many researchers to capture frequency variation with time of nonlinear 
systems. However, the study of time-frequency responses of hysteretic nonlinear systems is insufficient and its 
accurate physical meaning is not yet clear. In the method one, the structural seismic response is dealt with by 
continuous wavelet transform first. Then the wavelet transform coefficients are integrated along each vibration 
period to obtain the periodic energy spectrum. The ridge of the energy spectrum is extracted and the average 
frequency in each vibration period is identified. Also, the physical meaning of the time-varying frequency of 
hysteretic nonlinear system is discussed. 
 
The wavelet transform of a signal )(tx is presented as an example of a time-scale decomposition obtained by 
dilating and translating a chosen analytical function (wavelet) along the time axis. The continuous wavelet 
transform is defined as follows: 

∫
+∞

∞−

−
= dt

a
bttx

a
baW )(*)(1),( ψψ                          (2.1) 

where b is the parameter localizing the wavelet function in the time domain, a is the dilation parameter defining 
the analytical window stretching and *ψ is the complex conjugate of the basic wavelet function. Therefore, 
b represents a time parameter and a is related to frequency. The Gabor wavelet function is used in this paper to 
obtain the structural time-frequency response. The Gabor wavelet function is defined as  

tit ee ησ

πσ
ψ ⋅= − )2/(

4/12

22

)(
1                           (2.2) 

where parameter σ and the initial scale define the time and frequency spread of the Gabor wavelet function, 
andη is the parameter of frequency modulation. For discussing the physical meaning of time varying frequency 
of hysteretic system, the wavelet coefficient ),( baWψ is integrated along each vibration period. Since the 
dilation parameter a and translation parameter b have clear relationship with frequency ω and time t of 
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system, the wavelet coefficient can also be expressed as ),( tW ωψ . Then the energy )(ωiE at each vibration 
period can be written as 

∫
+

=
Tt

ti
i

i

dttWE ),()( ωω ψ                                 (2.3) 

where it is the start time of the i th vibration period, T is the vibration period. Then the periodic energy 
spectrum, i.e. the variation of periodic energy )(ωiE with time, can be plot. With the same meaning of the ridge 
of the scalogram of wavelet transform, the ridge of the periodic energy spectrum also describes the frequency 
variation of structures. Detailed explanations of the various methods for ridge extraction can be found in [4-5] 
and will not be included here because of space limitations. 
 
To verify this method, a one-story structure with bilinear hysteretic model is considered here. The characteristic 
parameters of this model are list in Table 1, in which yf and yx denote the yield force and displacement; 0k and 

1k denote the initial and post yield stiffness.  
 

Table 1.1 Characteristic parameters and their quantities of the structures 
(i) One-story structure 

Story m (kg) yf (kN) yx (m) 0k (kN/m) 1k (kN/m) 
1 990147 3.44×103 0.012 2.87×105 2.12×104 

(ii) Three-story structure (the weak story is at the first floor) 
Stroy m (kg) yf (kN) yx (m) 0k (kN/m) 1k (kN/m) 

1 990147 3.44×103 0.012 2.87×105 2.12×104 
2 646512 6.30×104 0.172 3.65×105 1.76×104 
3 646512 6.30×104 0.172 3.65×105 1.76×104 

 

  
(a) displacement response (b) wavelet transform scalogram 

Figure 1 Displacement and its wavelet scalogram of the structure 
 

  
(a) periodic energy spectrum (b) time varying frequency 

Figure 2 Periodic energy spectrum and time varying frequency of the structure 
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N-S component of the EL Centro earthquake with the peak acceleration normalized to 8m/s2 is adopted as input 
excitation. The seismic responses of the structure are simulated by the Newmark numerical integration method. 
The displacement responses are plot in Figure 1. The displacement is then dealt with by the continuous wavelet 
transform and the scalogram is also shown in Figure 1. The periodic energy spectrum of displacement response 
is depicted in Figure 2. The time varying frequency of the structure obtained from the ridge of the periodic 
energy spectrum is also shown in Figure 2. It can be noted that the frequency is proportional to displacement 
amplitude. Then the variation of frequency reflects damage level of the structure.  
 
 
3. METHOD 2: NONLINEAR SYSTEM IDENTIFICATION BY USING KALMAN FILTER AND 
WAVE TRANSFORM  
 
Method one can not work well for multi-degree of freedom structures because of the complicated relationship 
between damage and structural frequencies. Then the method two is proposed here for damage identification of 
multi-degree of freedom structures. The extended Kalman filter and wavelet multiresolution analysis are 
simultaneously used in this method to identify hysteresis curves of structures, which reflect damage location and 
degree of structures.  
 
3.1. Problem Formulations and Solution Procedure 
 
Consider a shear-type multi-degree-of-freedom nonlinear system subjected to earthquake excitation. The 
governing equation can be written in matrix form as 

  )()()()()( txtttt g&&
&&& M1XKXCXM −=++                       (3.1) 

where )(tX&& , (t)X& , =)(tX acceleration, velocity, and displacement vectors of the system. Suppose that only 
structural responses at limited DDOFs can be measured. =1 an unity vector; =)(txg&& ground acceleration. 

M , C , and =)(tK mass, damping and stiffness matrices respectively and their value at the initial state can be 
obtained according to the dimension and material property of structural elements. Suppose that M , C keep 
constant during earthquake in this study, while )(tK is time-variant after damage occurs and need to be 
identified. If we assume that the stiffness matrix keeps constant in each time step and equal to the tangent 
stiffness matrix at the beginning of this time step, then Eq. (3.1) is easily included in the incremental 
representation as follows: 

)()()()()( txtttt g&&
&&& Δ−=Δ+Δ+Δ M1XSXCXM                   (3.2) 

where =)(tS tangent stiffness matrix at the beginning of each time step. For an L-story shear-type frame 
structure, Eq. (3.2) can be expanded as: 
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where =L total number of stories; im , ic and )(tsi ( =i 1, 2, …, L ) = mass, damping and tangent stiffness 
coefficients at the ith story; )(txiΔ , )(txi&Δ and )(txi&&Δ =incremental displacement, velocity and acceleration 
at the ith story relative to the ground.  
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As mentioned above, the whole identification in each time step in the present method can be divided into two 
steps: (1) estimating structural responses at all DDOFs using the EKF based on a given tangent stiffness matrix; 
and (2) identifying the tangent stiffness matrix as well as hysteresis curves at each story using wavelet 
multiresolution analysis based on the total structural responses. It should be noted in this method that the 
structural mass, damping and stiffness matrices, together with the structural responses, at initial state are 
required to be known as the condition to initiate the identification. 
 
Step I: Estimation of structural responses at all DDOFs using the EKF. 
 
For estimating the structural responses at all DDOFs using EKF, Eq. (3.1) need to be expressed in a state-space 
representation as  

⎥
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where [ ]Tttt )(  )()( XXZ &= , is the state vector at time t . Since the stiffness matrix )(tK is time-variant and 
nonlinear, in general Eq. (3.4) can be expressed as 

]),([)( ttgt ZZ =&                                 (3.5) 
The observation equation of the nonlinear system is 

  )()()( ttt VHZY +=                               (3.6) 
where 1)( ×= utY  observation vector at time t  that may include displacements, velocities and accelerations; 
=u  total number of observations; Lu 2×=H matrix associated with observations and Lu 2≤ ; 

1)( ×= utV measurement noise vector and is assumed to be independent, white, and with normal probability 
distributions.  

   ),0(~)( RV Np                                 (3.7) 
where R is the covariance matrix of )(tV .  
 
The initial structural state vector )(ˆ

1tZ and its estimation error covariance matrix )(ˆ
1tP  at time 1t are 

assumed to be known according to the initial conditions. The initial tangent stiffness matrix )( 1tS can be 
obtained according to material properties and geometry of members. The full state at time 2t  can be estimated 

based on the initial tangent stiffness matrix )( 1tS , and the initial state )(ˆ
1tZ  and )(ˆ

1tP . Then the state vector 

)(ˆ
1+rtZ and error covariance matrix )(ˆ

1+rtP at time 1+rt ( )1(~1 −= λr ; =λ number of sampling data) can be 

estimated according to the )(ˆ
rtZ , )(ˆ

rtP and the tangent stiffness matrix at time rt . The sub-steps in the state 
estimation using EKF are as follows: 
(i) Start with filtered state )(ˆ

rtZ and its error covariance matrix )(ˆ
rtP , which is obtained based on the initial 

conditions or equal to their estimated value at previous time step. 
(ii) Evaluate the predicted state )(~

1+rtZ and its error covariance matrix )(~
1+rtP  by 
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where =Φ + )( 1rt nonsingular state transition matrix of the system; for small time interval tΔ , it can be 
approximately obtained as 
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where  
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Where =)( rtS tangent stiffness matrix at time rt consisting of tangent stiffness )( ri ts at each story. It is either 
equal to the initial stiffness matrix or the tangent stiffness matrix identified at time step rt . 
(iii) Estimate the Kalman gain matrix )( 1+rtκ  

  [ ] 1
1111 )()(~)(~)(

−

++++ += r
T

r
T

rr tttt RHPHHPκ                   (3.12) 

(iv) Estimate the filtered state )(ˆ
1+rtZ and its error covariance matrix )(ˆ

1+rtP by 

  [ ])(~)()()(~)(ˆ
11111 +++++ −+= rrrrr ttttt ZHYκZZ                    (3.13) 

  ( ) )(~)()(ˆ
111 +++ −= rrr ttt PHκIP                           (3.14) 

The full states are then estimated with observations at limited DDOFs, )( 1+rtY . 
 
Step II: Identification of tangent stiffness and hysteresis curves of each story according to the said estimated full 
states up to time 1+rt  using the wavelet multiresolution technique.  
 
Matrix equation (3.3) can be rewritten as follows: 

( ) ( ) ( )( ) ( ) ( ) ( )( )txtxctxtxmtxtxts iii

L
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11 ))(( &&&&& Δ−Δ+Δ−=Δ ∑

=

                   (3.15) 

where )()()( ttxtxtx iii Δ−−=Δ denotes incremental displacement relative to the ground at the ith story; 
)()( 1 txtx ii −Δ−Δ , )()( 1 txtx ii −Δ−Δ && and )()( txtx ii &&&& Δ−Δ are incremental interstroy drifts, velocities and 

accelerations, respectively; and =Δ )(txg&& incremental ground acceleration. )(tsi denotes tangent stiffness of each 

story. For identifying tangent stiffness )(tsi in Eq. (3.15), it is approximated using scaling function in subspace 

jv as follows:  

  ( ) ( )∑
=

− −=
l

n

j
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0
,, 2φ                             (3.16) 

where =n translation parameter of scaling function )(tiφ ; =njip ,, integral coefficients of scaling functions. 
Substituting Eq. (3.16) into Eq. (3.15), then the incremental governing equation of the i th story becomes 
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By setting )()()( 1 txtxt iii −Δ−Δ=Δε , and )()()( 1 txtxt iii −Δ−Δ=Δ &&&ε for notational convenience, Eq.(3.17) can 
be rewritten as follow:  

  ( ) ( ) )())(()(2
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Substitution of structural response obtained by observation and estimation at 1~ += rw ttt into Eq. (3.18) yields 
  iii BA =Θ                                     (3.19) 
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iA and iB are prior-known matrices composed of observations, estimated states and scaling functions. The 
unknown parameters, vector iΘ , are determined by means of the least-squares method 

  ( ) i
T
ii

T
ii BAAAΘ 1−

=                                 (3.20) 
where the superscript T is transpose of a matrix. Once iΘ is computed, the tangent stiffness 

)(tsi ( 1~ += rw ttt ) is approximated by substituting njip ,,  into Eq. (3.16). The identified tangent 

stiffness )( 1+ri ts at time 1+rt  will be used to estimate structural full states at time 2+rt .  
 
After the stiffness matrix is identified, taking the increment 1+= rr and returning back to Eq. (3.8), the same 
procedure is conducted until λ=r . Finally, the structural responses at each DDOF, together with the 
time-varying tangent stiffness are obtained by alternately using the EKF technique and wavelet multiresolution 
analysis in each time step (abbreviated to EKF-W method). The incremental nonlinear restoring force in each 
story is also obtained by multiplying the tangent stiffness by incremental interstory drift and the nonlinear 
restoring force is the sum of all incremental nonlinear restoring force before rt . Then the hysteresis curves of 
each story can be easily obtained.  
 
3.2. Numerical Examples 
 
The EKF-W method is tested through simulation on a base-excited shear-type three-story frame with bilinear 
hysteretic model at each story. The characteristic parameters of this structure are also list in Table 1. The 
damping ratio of the structure is 0.05. Responses of the bilinear system subjected to white noise (the peak 
accelerations is 14.44 m/s2) are simulated by the Newmark numerical integration method. After that, responses 
at some stories are selected as observations. The total structural seismic responses and hysteresis curves at each 
story are then identified by the EKF-W method. To investigate impact of observation and damage location on 
precision of identification, total two weak story cases (the weak story is at the first and third story respectively) 
and twelve schemes of sensor placement are considered. However, only the case with the weak story at the first 
story and observation at the bottom two stories is shown here because of the space limitation.  
 
In this identification, the mass and damping coefficients are assumed to be constant during excitation and 
prior-known; the initial stiffness is also assumed to be known beforehand. In each time step, the Daubechies 4 
wavelet is adopted here and the quantity of scaling function is 1/8 of the sampling interval to approximate 
tangent stiffness of each story. The matrix equation iiiii BAΘAA TT =  is solved by the Choleski 

decomposition for obtaining the iΘ . Figure 3 shows the identified hysteresis curves at each story. Also, the 
simulated hysteresis curves are depicted in this Figure as the real hysteresis curves. It can be noted that the 
EKF-W method can identify structural hysteresis curves accurately. Then the location and level of structural 
damage due to earthquake can be observed clearly through the identified hysteresis curves. It also should be 
noted that in the EKF-W method, the sensors should be placed at or near the weak story to get better 
identification results.  
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Figure 3 The identified and simulated hysteresis curves at each story 

 
4. CONCLUSIONS  
 
Two damage identification methods based on wavelet transform are proposed in this paper. In the method one, 
structural time varying frequency can be identified by extracting the ridge of periodic energy spectrum, which 
respects damage level of the structure. However, this method can not work well for multi-degree of freedom 
structure because of the completed relationship between the frequency and structural damage. This problem is 
solved by the method two, in which the hysteresis curves at each story are identified by using wavelet transform 
and Kalman filter. Then the location and level of structural damage can be observed clearly through the 
identified hysteresis curves. The efficiency of these two methods is verified by two simulation examples.  
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