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ABSTRACT : 

According to the self-organizing characteristic of rock system during evolution, synergetics is applied to
investigate the evolution process by taking dynamic disturbance into account, and a generalized dynamical
equation is established. And then a potential function equation is derived from analysis of rock mass structure. 
Furthermore, by using potential function method, we analyzed the influence of dynamic disturbance on
evolution and stability of rock system. The relationship between critical point of instability and parameters of
control parameter and disturbance intensity is also discussed and a formula which can be used to forecast 
critical point of instability is derived. Results indicated that dynamic disturbance can not only decrease the
stability of rock system but also induce its instability under certain conditions. Under same static states, stability
and feasibility of disturbance induced instability might increase along with increasing of fluctuation intensity.
The capability of destroying rock mass for a given disturbance is also effected by the state or control parameters
of rock mass. 
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1. INTRODUCTION 
 
Rock burst and shock bump are typical dynamic disasters in deep mining, to seek for their generation
mechanism is the basis of hazards prediction and control. In recent years, more and more evidence show that 
deep underground rock mass is sensitive to dynamic disturbances, including earthquake vibration and blasting 
vibration, which are usually the main reason for dynamic disasters. Evidently, to find out the influence of these 
disturbances on rock failure and instability is beneficial to disaster prevention of deep mining.  
Due to the complexity of rock structure and mechanical response, many non-liner methods have been applied to 
investigate the evolution mechanism and stability of deep rock mass or other disorder materials [e.g., Rundle, 
1988; Lu, 1996; Silberschmidt, 1996; Yang, 1997; Andersen et al, 1997; Zhao, 1998; Main, 1999; Leung and 
Neda, 2000; Xie et al., 2001; Kapiris et al., 2004; Jiménez et al., 2007; Shao et al., 2007, 2008]. Especially, 
constructive attempts based on self-organization theory have caught many researchers’ attention. In this paper,
based on synergetics theory and analysis of rock mass characteristic, we first establish a generalized dynamical 
equation to describe the evolution process by taking dynamic disturbance into account. And then, we 
investigate the mechanism of disturbance induced dynamical instability using potential function method.
Furthermore, the criticality of dynamic disturbance induced catastrophic failure of rock mass is discussed. 
 
 
2. GENERALIZED DYNAMICAL EQUATION OF ROCK MASS 
 
2.1. Generalized Langevin Equation 
Assuming that q1(u,t), q2(u,t), …, qn(u,t) are space-time variables of a system, then the states of this system can 
be expressed using vector form { }1 2 nq= q ,q , ,qr

K . The change rate of variables is 
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q1′=K1+F1(q1,q2, …, qi, …,qn), …, qn′=Kn+Fn(q1,q2, …, qi, …,qn)        (2.1)
 
In terms of synergetics[Haken, 1983], to describe the behavior of the nonlinear dynamical system expediently, 
the slaving principle can be used to simplify the high-dimensional equations to be low-dimensional equations, 
which are called order parameter equations. When only one order parameter q1 in the system, by inserting 
q2′=…=qi′=…qn′=0 in Eqn. 2.1 we obtain 
 

q2=H2(q1), …, qi=Hi(q1), …, qn=Hn(q1)                 (2.2)

Substituting Eqn. 2.2 in Eqn. 2.1 we have 
 

q1′=Kq1+g1(q1,q2, …, qi, …,qn)=f(q1)                 (2.3)

where K is a control parameter and f(q1) is the nonlinear function of q1. 
To deal with the problem of system evolution using synergetics, a common method is to establish a proper 
Langevin Equation which can reflect the characteristics of the system state. According to synergetics theory, 
when outside stochastic disturbance is considered, the generalized Langevin Equation used to describe the 
evolution process of a system can be expressed as 
 

q1′=f(q1)+q1η(t)                            (2.4)
 
where q1 is the order parameter, f(q1) is a function of q1 and η(t) denotes the outside stochastic fluctuation with 
properties given by 
 
 

<η(t)>=0, <η(t)⋅η(t′)>=2Dλ(t-t′)                     (2.5)
 
where λ is a correlation function and D denotes fluctuation intensity. So the idiographic form of f(q1) should be 
defined for further discussion. 
. 
2.2. Dynamical Equation of rock mass 
To deep underground engineering, excavation will cause the variation of initial stress in rock mass. For brittle 
rock, the typical fracture mode due to stress redistribution is vertical split, which may form rock block structure 
along rock wall, as shown in Figure 1. 
In order to obtain the evolution rule, the fractured structure is simplified to be a block with both ends built-in. 
Thus, its bending deformation under stress in rock mass can be expressed as 
 

v=Me[1-cos(2πxp/L)]/P                            (2.6)
 
where v is the flexure deformation of arbitrary point along vertical direction of rock block, Me is moment of 
couple, P is the external force and L is the length of rock block. Because Me /P in Eqn. 2.6 equals to half of the 
maximal deflection δ, Eqn. 2.6 is rewritten as follows 
 

v=0.5δ[1- cos(2πxp/L)]                           (2.7)
 
Under compressive stress, the bending deformation of block will cause the increase of elastic potential in it. 
According to theory of elasticity, the increase of elastic potential V is 
 

V=∫0LM(E, I, xp)[ v″2/(1+v′2)-3/2] dxp                      (2.8)
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where M(E, I, xp) is the bending moment of arbitrary point of rock block, E is elastic modulus and I is moment 
of inertia。 

(a) rock block structure              (b) simplified model 
Figure 1 Deformation of rock block structure and analytical model 

 
To obtain the general expression for V, we first use Eqn. 2.7 to calculate the second order derivatives of v and 
have 
 

v″=2δ(π/L)2cos(2πxp/L)                            (2.9)
 
Then do a Taylor-series expansion of (1+v′2)-3/2. Thus, if we substitute Eqn. 2.9 and the expansion equation in 
Eqn. 2.8, we have 
 

V=αδ2-βδ4                                (2.10)
where, 
 

α= 4(π/L)4∫0L[M(E, I, xp)cos2(2πxp/L)]dxp 
 

β=1.5(π/L)4∫0LM(E, I, xp)[1-2cos(2πxp/L) + cos2(2πxp/L)]cos2(2πxp/L) dxp 
 
Since the vertical length of rock block is far larger than that of its transverse deformation, it is thought
reasonable that the actual force in the whole rock block can be expressed as the applied force F at xp=L/2
approximately. It is 
 

F=-∂V/∂xp=4βδ3-2αδ                             (2.11)
 
On the other hand, for a nonlinear elasticity system, the law of motion obeys 
 

P 

P 

Me 

v

xp 

δ 
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F=Mx″+α1x′+α2(x′)2 +…                          (2.12)

where M is the mass of rock block, x′ and x″ denote the velocity and accelerated velocity at the centroid of rock
block, respectively. In Eqn. 2.12, the parameter x″ is usually small and can be neglected. We can also take no
account of the high order terms of x′ since the velocity of deformation is not high. If it is considered that x 
equals to δ at the centroid of rock block, we then compare Eqn. 2.11 and Eqn. 2.12 and obtain 
 

x′= ax3-bx                                 (2.13)
 
where a and b are dominated variables, and a=4β, b=2α.  
As mentioned above, the stability of rock mass is sensitive to dynamic disturbances. When the disturbances is 
considered, we compare Eqn. 2.4 with Eqn. 2.13 and obtain the dynamical equation of rock mass as follows 
 

x′=f(x)+xη(x)= ax3-bx+xη(x)                        (2.14)
 
 
3. POTENTIAL FUNCTION ANALYSIS OF EVOLUTION AND STABILITY 
 
3.1. Stochastic potential function and critical property 
Potential function analysis is a popular method in the domain of nonlinear dynamical system. In general, to deal 
with outside disturbances induced phase transition, we should derive a stochastic potential function relating to 
the evolution of system. The expression of stochastic potential function can be derived from the deterministic
potential function V(x). According to synergetics, the relationship between V(x) and function f(x) is 
 

f(x)=-∂V(x)/∂x                                  (3.1)
 
Hence, by using Eqn. 2.14 and Eqn. 3.1, we have 
 

V(x)=-0.25ax4+0.5bx2                            (3.2)

Furthermore, the relationship between deterministic potential function V(x) and stochastic potential function
U(x) is given by 
 

               U(x)=∫[V′(x)/ g2(x)]dx+Dln⎢g(x)⎢                       (3.3)
 
where V′(x) is the first derivative of V(x) and g(x) = x. By inserting Eqn.3.2 in Eqn. 3.3 we get  
 

U(x)=-0.5ax2+(b+D)lnx                            (3.4)
 
Setting the first derivative of U(x) equal to zero and making use of Eqn. 3.4, we find that 
 

xc=[(b+D)/a]1/2                                (3.5)

where xc denotes the critical point of disturbance induced instability. Thus it can be seen that the stability of 
rock mass relates to not only its instantaneous evolution state but also the fluctuation intensity resulted from 
outside disturbances. The critical property of instability is determined by combined action of control parameters 
and fluctuation intensity. This property remarkably differs from that happened under static loading condition. 
 
3.2. Analysis of dynamic disturbance induced instability 
In Figure 2 we show results from calculations of U(x) using Eqn. 3.4 for four different fluctuation intensities, 
D=0.05, 0.15, 0.25 and 0.40, with the fixed values for a= -1 and b= -0.2. We find that the plots show single
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potential wells when D are small. The right-hand of curves descend and the bottom of wells tends to gentle
gradually. These characteristics show the stability of system is on the decline along with increasing fluctuation 
intensity. But when the value of D is big enough, for example, D=0.25 and 0.40, the bottom of potential wells 
disappear and the structure of potential wells overturn drastically. In these cases, there are no bottoms of wells 
and instability of system happens. These results indicate that the stability of rock mass may be affected by the 
intensity of disturbance remarkably. Although the rock mass is steady under static circumstance, there is a great 
probability of instability if the outside disturbance is conspicuous. 
 

 
Figure 2 Curve of stochastic potential function for different values of D 

 

 
Figure 3 Curve of stochastic potential function for different control parameters 

 
Figure 3 displays results from calculations of U(x) using Eqn. 3.4 for four different groups of control
parameters. Each group of parameters represents a kind of static state of rock mass. As we can see，disturbance 
induced instability takes place in all the four given conditions, but the shapes of curves have some different. 
Near x tends to zero, the larger the numerical value of ordinate is, the easier the instability happens. So the 
capability of destroying rock mass for a given disturbance is effected by the state or control parameters of rock 
mass. 
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4. CONCLUSION 
 
In this paper, we apply synergetics to research influence of dynamic disturbance on evolution and stability of
deep underground rock mass based on the self-organizing characteristic of rock system. We have described in 
detail a new generalized dynamical equation which could simultaneously take deterministic and stochastic 
processes into account. Furthermore, a potential function equation is derived from analysis of rock mass 
structure. Using potential function method, the influence of dynamic disturbance on evolution and stability of
rock system is analyzed. The relationship between critical point of instability and parameters of control
parameter and disturbance intensity is also discussed and a formula which can be used to forecast critical point 
of instability is derived. Results indicated that dynamic disturbance can not only decrease the stability of rock
system but also induce its instability under certain conditions. Under same static states, stability and feasibility
of disturbance induced instability might increase along with increasing of fluctuation intensity. Under same
fluctuation intensity, the larger the numerical value of ordinate is, the easier the instability happens. The 
capability of destroying rock mass for a given disturbance is effected by the state or control parameters of rock 
mass. 
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