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ABSTRACT: 

In this paper, in order to analyze seismic reliability of large-scale lifeline networks, the concept of structural 
function and complementary structural function are introduced. Then, a path-based recursive decomposition 
algorithm and a cut-based recursive decomposition algorithm are derived to calculate the seismic reliability of
lifeline networks. These two algorithms can enumerate the disjoint minimal paths and the disjoint minimal cuts 
simultaneously. As the result, a probabilistic inequality can be used to give the approximate reliability. Based on 
seismic reliability analysis of lifeline networks, a topology optimization model is established. The goal of the
model is to find the least-cost network which satisfies specified seismic reliability. Combining with the
path-based recursive decomposition algorithm, three optimization algorithms, genetic algorithm, simulated
annealing algorithm and simulated annealing genetic algorithm, are presented to obtain the optimal solutions. 
Above approaches have been used to a practical gas network.  
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1. Introduction  
 
The lifeline systems, including water distribution, gas supply and power networks etc, are the arteriae of 
modern cities. With the development of modern society, lifeline systems play more and more important roles in
urban life (Li, 2005). The investigations of many previous earthquakes indicated that the performance of lifeline 
systems may have important effects on the property losses and casualties of cities during the disasters. In fact, 
almost all the lifeline systems suffered serious damages during many previous strong earthquakes.  
 
For lifeline networks, just like building structures, seismic analysis and seismic optimization or design are two
important research fields. In this paper, the concept of network structural function and complementary structural 
function are introduced. By taking of the recursive decomposition of structural function and complementary
structural function, a path-based recursive decomposition algorithm and a cut-based recursive decomposition 
algorithm are deduced to evaluate network seismic reliability. A number of case studies show that these two 
algorithms form high efficient and accurate methods to calculate the large-scale networks seismic reliability. 
Based on these technologies, the topology optimization model is further explored. The goal of the model is to
find the least-cost network which satisfies specified seismic reliability. Three optimization algorithms, genetic
algorithm(GA), simulated annealing algorithm(SAA) and simulated annealing genetic algorithm(SAGA), are
developed to get the optimal solutions. An actual gas network is investigated to indicate the validity of the 
proposed approaches. 

 
2. Seismic Reliability Evaluation of Lifeline Networks 
 
2.1 Structural Function and Complementary Structural Function 
A network is a graph with a weight assigned to each edge or node. In a network, the weight denotes the success 
probability (reliability) of corresponding edge or node. In this paper, only edge-weighted networks, i.e. edges
are assigned weights, are considered. However, for the node weighted networks and general weighted networks, 
the proposed algorithm is also available after making small changes. 
 
For an edge weighted network, each edge can be in either of two states, operative state or failed state. Therefore 
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the network also owns two states, operative state or failed state. By introducing Boolean algebra, the operative 
state and failed state are represented by 1 and 0 respectively. The terminal nodes are denoted as source and sink. 
Then network structural function is represented by ( )GΦ  defined as follows 
 

                         
1 if network operates

( )
0 if network fails 

G ⎧
Φ = ⎨

⎩
                             (2.1)

 
When all edges of any path of the network are in operative state, the network operates. View network structural
function and all edges in the network as boolean variants, the network structural function can be written as  
      

    ( )
1

m

k
k

G A
=

Φ =∪                                     (2.2)

 
where m is the number of minimal paths (MPs) of G and kA  is a MP of G.   

 
Correspondingly, a complementary structural function of network can be defined as follows 
 

                        
1 if network fails

'( ) 1 ( )
0 if network operates

G G ⎧
Φ = −Φ = ⎨

⎩
                     (2.3)

 
Similarly, the complementary structural function can be expressed as the union of all minimal cuts (MCs) 
  

           ( )
'

1

'
m

k
k

G D
=

Φ =∪                                   (2.4)

 
where m’ are the number of MCs of G and kD  represent a MC of G.   

 
2.2 Path-based Recursive Decomposition Algorithm 
In order to simplify the calculation, define a shortest MP from the source to the sink as 

11 11 12 1mA a a a= ⋅⋅ ⋅ , 
where 1ia  is an edge of the network and 1m  is the number of edges in 1A . From 1A , according to Boolean 
laws and De Morgan’s Law, the network structural function ( )GΦ  becomes 

 

                      
1 1

1 11 11 11 12 12

11 12 1 1 1 1 11 12 1 1

( ) ( ) ( )
           ( ) ( )i i i m m

G A a G a a G
a a a a G a a a G−

Φ = + Φ + Φ +
+ Φ + + ⋅⋅ ⋅ Φ

"
" "

                (2.5)

 
where 1iG  represents a subgraph after removing edge 1ia  from G and merging the nodes connecting with the 
edge 1 ( 1,2,... 1)ja j i= −  into the source in sequence. 
 
Above subgraphs can be classified into connected subgraphs and disconnected subgraphs. If taking the number
of connected subgraphs as 1pm , then the number of disconnected subgraphs is 1 1 1c pm m m= − . Meantime, if 

1iG is a disconnected subgraph, the coefficients in front of 1( )iGΦ  forms a disjoint minimal cut (DMC) of G.
Let 1 11 12 1 1 1j i iC a a a a−= " , then complementary structural function can be written as 
 

 
1

1 1
1

( )
cm

j
j

G C Q
=

′Φ = +∑                                  (2.6)
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where 1Q  is the remainder term, denoting that 1 jC  do not form whole DMC set.  
 
As disconnected subgraphs exist no path, their structural functions equal to 0 and ( )GΦ  can be rewritten as 
 

                               
1

1 1 1
1

( ) ( )
pm

i i
i

G A B G
=

Φ = + Φ∑                            (2.7) 

 
where 1 11 12 1 1 1i i iB a a a a−= "  and 1iG  denotes the connected subgraph. 
 
Decompose above connected subgraphs step by step until no connected subgraph exists, then all disjoint
minimal paths (DMPs) will be enumerated. Finally ( )GΦ  can be expressed as 
 

                                    
1

( )
M

i
i

G L
=

Φ =∑                                 (2.8) 

 
where iL  is a DMP and M  is the number of all DMPs. 
 
At the same time, all DMCs are also enumerated, that is  
 

                                     
1

( )
K

j
j

G C
=

′Φ =∑                               (2.9) 

 
where jC  is a DMC and K is the number of all DMCs. 
 
After enumerating all DMPs and DMCs, the reliability and the failure probability of the network can be
deduced as 
 

                             
1

[ ( ) 1] ( 1)
M

i
i

R P G P L
=

= Φ = = =∑                          (2.10) 

                                 
1

[ '( ) 1] ( 1)
K

j
j

F P G P C
=

= Φ = = =∑                         (2.11) 

 
For a large network, it might be impossible to enumerate all disjoint products. In these cases, the upper bound
and the lower bound of the network reliability can be calculated using the probabilistic inequality (Li, 2005) 

 

                                 
1 1

( 1) 1 ( 1)
fs KM

i j
i j

P L R P C
= =

= ≤ ≤ − =∑ ∑                        (2.12)

 
where sM  and fK  are the number of calculated DMPs and DMCs, sM M≤  and fK K≤ . 
 
When the difference between the upper bound and the lower bound is smaller than a specified error bound, the
approximate network reliability can be given as 
 

                                  
1 1

0.5 1 ( 1) ( 1)
f sK M

j i
j i

R P C P L
= =

⎛ ⎞
= − = + =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑                   (2.13)
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2.3 Cut-based Recursive Decomposition Algorithm 
Similar to the path-based recursive decomposition algorithm, define a MC of G as 

11 11 12 1mD a a a= ⋅ ⋅ ⋅ . Using De 
Morgan’s Law and Boolean laws, network complementary structural function becomes 
 
                         

1 11 11 11 11 12 1 1'( ) '( ) '( )m mG D a G a a a GΦ = + Φ + + ⋅⋅ ⋅ Φ"                  (2.14) 
 
where 1iG  represents a subgraph after removing edge 1 ( 1,2,... 1)ja j i= −  from G and merging the nodes 
connecting with the edge 1ia  into the source. 
 
Above subgraphs can be classified into absorbing subgraphs (the subgraph that sink is merged into source) and
non-absorbing subgraphs. For each absorbing subgraph, the coefficients in front of its complementary structural 
function forms a DMP of network. For non-absorbing subgraphs, decomposing them repeatedly until no 
non-absorbing subgraph exists, then all DMCs will be enumerated. Meantime, all DMPs are also enumerated. 
Correspondingly, the probabilistic inequality can be used to calculate the approximate value. 

3. Seismic Reliability Optimization of Lifeline Network 
 
3.1 Optimization Model 
Apparently, the seismic reliability of the lifeline network systems is determined by its edge seismic reliability
and its topology. Usually, the strategies to improve edge reliability include using ductile pipeline materials and 
adopting larger diameter pipelines and so on. But these methods may be not suitable for existing lifeline 
networks because some pipelines have to be discarded before they are out of service. So modifying the network 
topology by adding several edges to or removing several edges from the network is a feasible way to improve
the network seismic reliability. 
 
The network topology can be set as an optimization model. As its optimization object is actually to find the 
least-cost network topology structures which satisfy prescribed seismic reliability constraint, the optimization 
model can be mathematically formulated in the following general form 
       

minimize *( ) j jC G cγ= ∑                                           
subject to 0 1,2,...,kP P k n≥ =                                  (3.1) 

                      *G  is a subgraph of G         
 
where G  represents a network and is usually generated empirically, *G  is a solution of the model, jγ takes 

value of 1 if edge j exists in *G  and 0 inversely, kP  represents the seismic reliability between sources and 
terminal k and can be calculated using above path-based recursive decomposition algorithm, 0P  represents the 
reliability constraint and jc  represents the cost of edge j and can be evaluated in an actual lifeline network. 
 
Obviously, above problem is a typical combinatorial optimization problem in which jγ  is the optimization 
variable. Considering a network with 60 edges and 30 nodes, the number of all potential networks is 

60 17
60

29
7.5 10i

i
C

=
≈ ×∑ . Assuming to use a computer that can deal with 100 networks a second, it will take about 

82.38 10×  years to calculate all feasible networks. It is impossible in practice. Therefore, the modern optimal 
algorithms, such as GA, SAA and SAGA, should be introduced to solve this optimization model.  
 
3.2 Genetic algorithm   
GA was pioneered by J. H. Holland during the mid-1970s in the field of machine learning (Holland, 1975). It is 
a method of searching solutions in the solution space by imitating the natural selection process (Holland, 1991). 
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GA has been widely used in various optimization tasks, including numerical optimization, combinatorial
optimization problems such as knapsack problem and airline crew scheduling problem (Xuan et al, 2004). In 
order to use GA in the topology optimal problem of lifeline networks, a generation including many genes is
created initially where each gene represents a network. Then by using selection, crossover and mutation
operators, a new generation is evolved. The fitness of each gene determines whether it will survive or not. After
a number of iterations or when some criteria are met, a near-global optimal solution could usually be found.  
    
3.2.1 Representing graphs as genes 
Manipulating a network with GA requires that the network is properly represented. Note that any gene in GA is
a subgraph of original G. The simplest 0-1 binary coding can be adopted here. An n bits array is used to 
represent a graph and each bit represents an edge of the graph G, where n is the number of edges in G. A ‘1’ in 
the array means that the gene consists of a corresponding edge of G while a ‘0’ means not. For example, Fig.1
is a bridge network. In this figure, the original G includes all edges while the subgraph doesn’t include the edge 
5(dash line). Then the corresponding gene of the subgraph can be written as 11110. 
 

1

s t

4

5
2 3

. 
Figure 1 A bridge network 

 
3.2.2 Generating initial graphs 
Because all the other generations in the genetic algorithm evolve from the first one, so it is reasonable to hope
the first generation contains as many diverse genes as possible. Therefore generating a series of random graphs
is the main job in this step. To generate a random graph, a gene is initialized to contain no edges. That means
the bits in the array of the gene are all ‘0’s. Then each bit in the array is chosen in turn and changed to ‘1’ at a 
prescribed probability. In other words, each edge in G is added to the graph at random. It must be noted that not 
all graphs generated from above method are feasible in practice. Disconnected graphs have no practical 
meanings. Therefore one must first judge the connectivity of each graph in the initial generation and modify the
disconnected graphs by adding several edges at random. In order to keep the schema of the genes, only a small
number of edges can be added to a disconnected graph. If the graph is still a disconnected graph after 
modifying, it is discarded and a new gene is generated to replace it.   
 
3.2.3 Evaluating the graphs 
At each generation, the genes need to be evaluated to determine their fitness. Since the model is to calculate the
least-cost system, evaluation requires calculating the cost of each edge. However, it must be noted that not all
genes in the generation are feasible solutions because some of them may not satisfy the reliability constraints. 
For these genes, a penalty factor, a function of the system seismic reliability, is applied to those unfeasible
solutions. The penalty factor can be defined as 
 

 
min 0

max min
min min min 0

min min

0
( ) max( )

max( ) min( )

i

j i i
j i

P P
C CQ X P P P P

P P

≥⎧
⎪ −= ⎨⎡ ⎤− <⎣ ⎦⎪ −⎩

             (3.2) 

 
where min jP  represents the minimum nodal seismic reliability of gene j, maxC  and minC  represent the 
maximum and minimum cost of the gene in one generation respectively. 
 
The fitness of gene k can be written as 
 

 ( ) ( ) ( )T k S C k Q k= − −                             (3.3)
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where S is a large value and C(k) represents the cost of gene k.  
 
3.2.4 GA operators 
There are three operators, selection operator, crossover operator and mutation operator, to be used on the genes
in current generation to produce the genes in the next generation.  

 
The selection operator is a core operator of GA. It selects the superior genes, individuals with high fitness, at a 
high probability and inferior genes, individuals with low fitness, at a low probability and passes them to next 
generation. Although many selection operators are available, roulette wheel selection operator and elitist
selection operator (Chen et al, 1996) are adopted here.  

 
The crossover operator is an operator which guarantees the global searching capability of GA. This operator 
takes two genes at a prescribed probability and produces two offsprings. In this paper, one-point crossover 
operator (Chen et al, 1996) is adopted for producing new genes.  

 
The mutation operator is used to guarantee the local searching capability of GA by perturbing the genes
generated from crossover operator. The process of this operator is very simple, selecting a gene and changing 
each bit of gene into 0 if it was 1 and 1 if it was 0 at a prescribed mutation probability.   
 
3.2.5 Stopping criteria 
In this paper, the algorithm stops when the number of iterations reaches to maximum iteration number.  

 
3.3 Simulated annealing algorithm  
SAA was first introduced by Kirkpatrick et al (1983) and independently by Cerny (1985) as a 
problem-independent combinatorial optimization technique. SAA has been applied to a wide range of difficult
combinatorial optimization problems, such as traveling salesman problems (Aarts et al, 1998), large-scale 
integration computer-aided design (Wong et al, 1988), computer communication networks design (Samuel et al, 
1995) and so on. 
 
SAA is a search procedure in which the current solution is continually compared to solutions which are 
obtained by carrying out a perturbation. The perturbation result is accepted at a probability described as 
followings: 
 

       ( ) ( ) ( )( )
1

exp [ ]/
P i j

f i f j t
⎧⎪⇒ = ⎨ −⎪⎩

  
( ) ( )
( ) ( )

f j f i

f j f i

≤

>
                    （3.4）

 
where ( )f i  is energy function of solution i determined by its cost and seismic reliability and t is current 
temperature, a control parameter which decreases as the process of SAA goes on and approaches 0 at last.   
 
Apparently if the perturbation result is an improved solution, it is accepted and the current solution is updated
accordingly. Otherwise, it can also be accepted at a probability described in Eq.(3.4). By accepting a worsening
solution, SAA avoids being trapped too early in a local optimal solution. On the other hand, the probability of 
accepting a worsening perturbation solution decreases because t decreases as the process of SAA goes on, 
which guarantees the algorithm will eventually converge and be less likely to move away from a global optimal 
solution after having approached it. 
 
For the network topology optimization problem, a solution is represented as the same as the gene in GA and the
process of SAA can be described as followings. 
①Produce an initial solution using the same method as producing the genes in initial generation of GA； 
②Determine current temperature t based on the initial temperature T and cooling schedule. If the current 
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temperature is lower than the terminal temperature, stop. 
③Perturb current solution and generate a new solution. Calculate its energy function and determine the
accepting probability of the new solution. 
④Generate a number varied from 0 to 1 at random and compare it with above accepting probability. If the 
random number is smaller than the accepting probability, the new solution is accepted and the current solution
is updated. Otherwise, the new solution is discarded and current solution is preserved. 
⑤Judge whether the number of perturbations has reached prescribed value or not at current temperature, if yes, 
go to step ②, or go to step ③.  

 
3.4 Simulated annealing genetic algorithm  
Although GA is a very useful algorithm for combinatorial optimization problem, it has a major limitation that
premature convergence will occur when the genetic algorithm cannot find the optimal solution due to loss of
some important characters. The reason is that GA depends heavily on crossover operator, and the mutation
probability is generally too small to move the search into another space. To overcome this problem, many 
researchers (Ilkwon et al, 1996; Yu et al, 2000) notice that SAA is good at widening the searching space and its
operator is very similar with the mutation operator in GA. So a hybrid algorithm which replaces the mutation 
operator in GA with the perturbation in SAA at the same temperature is developed. In other words, each gene
generated by crossover operator will be perturbed to produce several new solutions and be updated according to
the accepting probability in Eq.(3.4). Herein the initial temperature is used for the first generation and the
temperature doesn’t change in one generation but decreases in next generation. 

 
4. Case Study 

 
A gas network locatedin a City of China, which consists of 463 nodes and 977 pipelines, is investigated in this 
paper. Using path-based recursive decomposition algorithm, the seismic reliability of network is calculated and
the result is shown in Fig.2. Just for such a complexity network, path-based recursive decomposition algorithm 
can give the results accurately and quickly. Also, let 0P equal to 0.8, GA and SAGA have been used to solve 
the seismic topology optimization problem of the gas network and the result is shown in table 4.1. Also the 
result calculated by GA is shown in Fig.3. Apparently, after optimization, the network seismic reliability of the
network increase much more, all nodes are in the state of reliable (reliability is between 0.9 and 1) or lightly
damaged (reliability is between 0.7 and 0.9). 
 

         
Figure 2 Seismic reliability of the network          Figure 3 Seismic reliability of  

the network after optimization 
           

      Table 4.1 Comparison of GA and SAGA for the actual network 
Algorithm Cost 

GA ￥573,013,000 ($74,417,272) 
SAGA ￥570,820,000 ($74,132,467) 
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5. Conclusion 
 
Seismic reliability analysis and optimal design of lifeline systems is important for modern cities that located on
earthquake areas. Based on structural function and complementary structural function, several systematical 
recursive decomposition algorithms were developed to give the seismic reliability of lifeline networks.
Combining with these algorithms, different optimal algorithms, genetic algorithm, simulated annealing
algorithm and simulated annealing genetic algorithm, are explored to solve the topology optimization problems
of lifeline systems. Case study indicates that above approaches provide an efficient route on seismic reliability
analysis and optimization of lifeline networks. 
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