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ABSTRACT : 
The differential quadrature element method (DQEM) is applied to computation of the eigenvalues of small 
amplitude natural vibration for continuous horizontally curved girder bridges with rigid piers in this paper. The 
DQEM uses the differential quadrature technique to discretize the governing differential eigenvalue equations 
defined on each member, the transition conditions defined on the inner-element boundary of two adjacent 
members and the end conditions of the continuous curved girder. Natural frequencies are calculated for a 
two-equal-span, continuous, curved, uniform girder bridge, and are compared with existing exact solutions by 
another method. Finally, parametric results for the effects of section gyration radius and flexure-torsion stiffness 
ratio on five different end conditions, to the out-of-plane natural frequencies of two-equal-span, continuous, 
curved girder bridges, are presented in dimensionless form. 
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1. INTRODUCTION  
 
With the rapid development of vehicle traffic and city construction, the number of curved girder bridges is rising 
rapidly. There is huge difference between the curved girder bridges and normal rectilinear girder bridges in 
dynamic characteristics, because of space curvature of the bridges. The torsional motions will be produced in 
the superstructures of the curved girder bridges accompanied with the bending responses under excitations of 
earthquake ground motion horizontally or vertically. Owing to their importance in structural design, the 
dynamic behavior of curved girders has been the subject of a large number of investigations. The total extent of 
the work in this field of natural vibration of curved girders is now too great to review in detail, but part of those 
papers that set the present work in context are described. Shore and Chaudhuri (1972) studied the free vibration 
of horizontally curved beams using closed-form solutions of the equations of motion. Snyder and Wilson (1992) 
calculated the free vibration frequencies of continuous horizontally curved beams using a nonexplicit 
closed-form solution of the partial differential equations of motion. Kang, Bert and Striz (1996) analyzed the 
natural vibration characteristics of single-span, horizontally curved beams with warping using the differential 
quadrature method (DQM). Howson and Jemah (1999) obtained the exact out-of-plane frequencies of curved 
Timoshenko beams using dynamic stiffness matrix, and discussed the effects of shear deflection and rotary 
inertia. 
 
The differential quadrature element method (DQEM) is developed on the basis of DQM (Chen 2005, 2008). 
This method absorbs advantages of both the traditional DQM and the finite element method (FEM). For the 
inner-element boundary conditions, encountered in continuous curved girders, which have been difficult 
problems for the traditional DQM, the DQEM can solve them effectively. The DQEM adopts the differential 
quadrature to discretize the governing differential equations defined on each element, the transition conditions 
defined on the inner-element boundary of two adjacent elements and the end conditions of the curved 
continuous girder. Then unite all the discrete equations and give solution to them. 
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The objective of this paper is to provide an approach of the free vibration behaviors for the continuous 
horizontally curved girder bridges with rigid piers. Natural frequencies are calculated for a two-equal-span, 
continuous, curved, uniform girder bridge, and the calculated frequencies of the bridge are compared with the 
existing exact solution. Parametric results of the two-equal-span, continuous, curved girder bridges are also 
presented in dimensionless form. 
 
 
2. DIFFERENTIAL QUADRATURE 
 
The idea of differential quadrature, introduced by Bellman and Casti (1971), is to approximate the values of the 
derivative at each gird point as weighted linear sums of the function values at all sampling grid points within the 
domain under consideration, i.e.  
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Equation (2.1) relates the mth-order derivative of the function y(x) at a sampling grid point x=xi to the function 
value yj=y(xj) at x=xj, with )(m

ijA and N denoting the corresponding weighting coefficient and number of discrete 
points within the domain, respectively. The weighting coefficients can be determined such that Equation (2.1) is 
satisfied exactly for m linearly independent test functions. These functions can be polynomials, trigonometric 
functions, or spline functions. If the Lagrange polynomials are chosen, the weighting coefficients for the 
first-order derivative can be calculated by 
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where the domain of independent variable x is usually changed into [0,1] by regularization transformation. Then 
the weighting coefficients for the mth-order derivative can be determined by 
 

mm AA ][ )1()( =                                        (2.4) 
 
The accuracy of the quadrature solutions is dictated by the choice of the locations of the sampling grid points. 
Equal spacing is a natural and convenient choice. However, non-uniform grid points have been demonstrated to 
enhance the accuracy of the results. An unequal form of common use can be expressed as 
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where the domain of x is [0,1]. 
 
 
3. GOVERNING DIFFERENTIAL EQUATIONS 
 
This paper deals with the continuous horizontally curved girder bridges with rigid piers, constant radius and 
uniform sections considering coincidence of torsion center and gravity center. Based on these assumptions, the 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
bridge could be treated just as a horizontally curved girder with decoupling of the out-of-plane and in-plane 
motion. For convenience, only the out-of-plane motion is considered here.  

 
 

Figure1 Coordinate of the curved girder 
 
 
Considering the coordinate system of the curved girder shown in Figure 1, in which R, φ, and O are radius, 
angle from the beginning section to a generic section, and gravity center of the generic section, respectively; V, 
M, and T are shear force parallel to axis y, bending moment about the radial axis x, and torsional moment about 
the centroidal axis z, respectively; and u, α, and θ are vertical displacement of the gravity center, bending slope, 
and twist angle, respectively. Considering the effect of shear deflections, the three inner forces V, M, and T can 
be written in terms of u, α, and θ as 
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where k is the shear correction factor; E and G are modulus of elasticity and shear modulus, respectively; A, I, 
and J are the area, second moment of area about axis x, and Saint-Venant torsion constant, respectively. 
 
Let ρ and ω denote the mass density and natural frequency, respectively. Based on the assumption that the 
cross-sectional shape is constant and doubly symmetric (Vlasov 1971), and for reference in the sequel, the 
differential eigenvalue equations of the curved girders considering shear deformation are expressed in 
dimensionless form as 
 

02222 =Φ+′Φ+′′ vsRvs λα                                  (3.2) 
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where each prime (′=d/dξ) denotes one differentiation with respect to the dimensionless coordinate Φ= /φξ ; 
Φ =opening angle of the member; s2=kGAR2/(EI); γ2=I/(AR2); μ=GJ/(EI); η=Id/d; λ2=ρAR4ω2/(EI); and Id = 
polar second moment of area of the cross section. 
 
The following boundary conditions are taken for simply supported ends: no vertical deflection, no bending 
moment, and no torsional rotation; and for free ends: no shear force, no torsional moment and no bending 
moment. For clamped ends, v, α, and θ equal zero. The boundary conditions for simply supported, free, and 
clamped ends are, in dimensionless form respectively 
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4. DQEM FORMULATION OF CONTINUOUS CURVED GIRDERS 
 
For simplicity of statement, this section takes an n-span continuous curved girder, with all supports simply 
supported, to illustrate the analysis process of the out-of-plane natural vibration of continuous curved girder 
bridges with rigid piers using the DQEM. Taking each span of the girder as an independent element, the number 
of all the elements is n. Let eΦ denote central angle the eth element. Let eφ be the coordinate variable of the 
local coordinate system with the origin located at node 1 of the element, and ],0[ ee Φ∈φ . Let ξ equal ee Φ/φ , 
so the range of ξ is [0,1]. Then we have 
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Introducing Equations (2.1) and (4.1) to Equations (3.2)-(3.4), one may have 
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for i = 2, ..., Ne-1, where Ne denotes the number of the points on the eth element. 
 
Using Equation (2.1), the conditions of the two ends of the continuous curved girder can be expressed as 
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where m=1 while r=1, and m=n while r=Nn. 
 
Using Equation (2.1), the transition conditions of the inner-element boundary of two adjacent members i and 
i+1 can be written as 
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After uniting Equations (4.2)-(4.6) and giving solution to them, one can obtain the values of natural frequency 
parameter λ. 
 
5. EXAMPLE AND COMPARISON 
 
An example of a two-equal-span continuous curved girder is presented to illustrate the application of the DQEM. 
As shown in Figure 2, all of the three supports are simple. The geometrical and physical conditions of the two 
spans, i.e. AB and BC, are identical, and the opening angle of each span is π/2, the rotary inertia γ=1/23.39, shear 
correction factor k=0.83, and Poisson’s ratio =0.3. Then the natural frequency parameter λ is calculated using the 
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DQEM formulation presented in Section 4. The results are compared with the analytical solutions as shown in 
Table 1. For simplicity of analysis, the number of sampling grid points of each member is chosen the same.  
 

 
Figure 2 A two-equal-span continuous curved girder 

 

 
Table 1 Comparison between the DQEM and exact solutions 

Frequency parameter λ Natural 
frequency 
number 

Exact  
solution N=5 N=9 N=13 N=17 N=20 N=30 

1 2.967 2.883 2.965 2.965 2.965 2.965 2.965 
2 5.394 5.545 5.39 5.39 5.39 5.39 5.39 
3 14.24 — 14.26 14.23 14.23 14.23 14.23 
4 17.89 — 17.91 17.87 17.87 17.87 17.87 
5 31.29 — 31.42 31.26 31.26 31.26 31.26 
6 35.57 — 35.59 35.54 35.54 35.54 35.54 
7 52.43 51.27 54.12 52.36 52.39 52.39 52.39 
8 56.82 54.37 60.01 56.75 56.77 56.77 56.77 

16 158.8 — — — 159 158.6 158.6 
 
 

From Table 1, it can be seen that there is a good agreement between the numerical and analytical results, and the 
accuracy of the numerical solution and the number of frequencies resolved increases with increasing N. For 
general engineering problems, 13 points on each element will be enough to satisfy the required precision, so the 
DQEM is of higher efficiency compared with the FEM for similar problems. 
 
 
6. PARAMETRIC ANALYSIS  
 
The model for the present parametric analysis is almost the same as the one in Section 5 except that the 
conditions of the two ends can change, that is, the middle support of the beam is simply supported for ever. The 
effects of section gyration radius and flexure-torsion stiffness ratio on five different ends conditions are 
presented in Figure 3-7, in dimensionless form. In this analysis, the sampling points are unequally spaced by 
Equation (2.5), and the number of sampling points on each member is 20. 
 
From Figure 3-7, it can be seen that the free vibration frequencies of the girder become small with reducing the 
restraints of two ends; the effect of the flexure-torsion stiffness ratio can be neglected while μ>10; the effect of 
section gyration radius is small while γ<0.2 if the restraints of two ends are less, such as the case of having one 
simply supported and one free end, but the range reduces with increasing restraints of two ends. 
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Fig. 3  Parametric results with two clamped ends           Fig. 4  Parametric results with one clamped 

and one simply supported end 

   
Fig. 5  Parametric results with two simply supported ends     Fig. 6  Parametric results with one clamed 

and one free end 

 

 
  Fig. 7  Parametric results with one simply supported and one free end 
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7. CONCLUSIONS  
 
Based on the assumption of rigid piers, the DQEM is used to calculate the out-of-plane natural vibration 
frequencies of continuous horizontally curved girder bridges considering the effect of shear deformation. 
Natural frequencies of a two-equal-span continuous curved girder are presented and compared with existing 
exact results. Comparison demonstrates high efficiency of the DQEM. Finally, the effects of section gyration 
radius and flexure-torsion stiffness ratio on different end conditions, to the out-of-plane natural vibration of 
two-equal-span continuous curved girders are analyzed using the DQEM. Results indicates that the free 
vibration frequencies of the girder becomes small with reducing the restraints of two ends; the effect of 
flexure-torsion stiffness ratio can be neglected while μ>10; the effect of section gyration radius is small while 
γ<0.2 if the restraints of two ends was less, but the range reduces with increasing the restraints of two ends. 
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