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ABSTRACT: According to the material characteristic of fiber plasterboard filled with reinforced concrete, 
the computational macro-model basing on the multi-component element is proposed and stiffness matrix of 
the model is provided. The inner vertical springs of the model are located at the points of Gaussian 
integration to improve the computational accuracy and efficiency. Based on the experiment study, hysteretic 
models of the vertical and horizontal component are revised and revised skeleton curves of the components 
are given. The elasto-plastic push-over is carried out to the four fiber plasterboard filled with reinforced 
concrete with the macro-model. The computational results are close to those of experiments, which show that 
the model has relatively high accuracy and simple calculation. We can get some points that plasterboard and 
steel reinforcement greatly affect the strength performance of the board and that effect of the intensity of 
concrete is small. 
KEYWORDS: plasterboard model, fiber plasterboard, skeleton curve, Gaussian integration 

1. INTRODUCTION 

 Glass fiber reinforced plasterboard (GFRP) is an Australian developed and manufactured walling 
product used in the building industry to provide habitable enclosures for buildings. The 120 mm thick, 
lightweight, hollow-core panels are machine made using gypsum plaster reinforced with chopped glass fiber, 
as is shown in Fig.1. Because the construction progress of the plasterboard with concrete is rapid compared 
with concrete construction，the plasterboard is also called rapid wall. However, since the rapid wall is made 
of many materials, its mechanical property is cared by engineers. To study lateral bearing capacity, 
deformation capacity, ductility of the wall, low-cycle tests were carried out. Like other new material on 
construction, calculating model for the rapid wall must be founded to analyze the material’s nonlinear 
performance which evaluates the earthquake resistance of rapid-wall building. 

For many years, domestic and international scholars have presented many macro mechanics models for 
shear wall, such as equivalent beam model, wall column model, truss model, etc. Recently, macro-model 
basing on multi-component elements is often used to study non-linear property of shear walls. The model 
adopting Timoshenko beam theory consists of vertical components, which stimulate the axial and flexural 
deformation and axial force, and a horizontal component, which stimulates shearing deformation and shear. 
Therefore, based on relevant literatures, material characteristic and test results of GFRP with fully filled with 
reinforced concrete, macro-model on multi-component element for GFRP with fully filled with reinforced 
concrete and skeleton curves of components are proposed to study the earthquake-resistance performance on 
GFRP with fully filled with reinforced concrete in this paper. 

 
 
 
 
 
 
 
 
 

Fig.1. Cross section of a GFRGP 
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2.MACRO-MODEL OF GFRP WITH FULLY FILLED WITH REINFORCED CONCRETE 

The macro-model of multi-component elements consists of four vertical springs (k1, k , k2 3, k4) and a 
horizontal spring (kh), which are connected with bold lines which denote stiffening bars, as are shown in 
Fig.2. k1, k4 springs denoting side columns bear vertical load and moment, k2, k3 springs denoting inner 
GFRP with fully filled with reinforced concrete bear vertical load and moment, and kh bears horizontal shear. 
To improve accuracy of calculating results, according to Gauss-Legendre second-order integral, the distance 

1 ( / 2 250)
3ml B= −l m between k2 or k3 component and central point o is  , where B is width of GFRP 

with fully filled with reinforced concrete. The distance between central point o and bottom beam is 0.5h and 
the pint o is the rotational centre of GFRP with fully filled with reinforced concrete. Thus, the stiffness and 
bending resistance influenced by axial force of GFRP is considered, so the model has more merits than wall 
column model. The element stiffness matrix of GFRP with fully filled with reinforced concrete is deduced as 
following. 

The top and bottom displacements of GFRP with fully filled with reinforced concrete are defined 
as{ } { , , , , , }T

i i i j j ju v u vθ θΔ = , where ， ，iu iv iθ  denote horizontal displacement, vertical displacement and 

angle of i end of the model , respectively and ， ，ju jv jθ  denote horizontal displacement, vertical 
displacement and angle of j end, respectively. Fore vector at the top and bottom of the model is 

, where denote shear, axial force and moment of end of the model, 
respectively and denote shear, axial force and moment of 

},,,,,i Y{}{ jjjii
T MYXMXF = iii MYX ,, i

jjj MYX ,, j end of the model, respectively. The 
direction sign of vectors is shown in Fig.2.  

The horizontal displacements of andi j ends are respectively  under shear deformation and the 
central point of rotation of the model is o point. Thus, following displacements and are obtained in 
accordance with geometry.   
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Fig.2 Macro-model of GFRP with fully filled with reinforced concrete 
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sin ,sini i j jθ θ θ θ≈ ≈Based on the small deformation, there are . Eq. (1) is subtracted from Eq. (2) and the 
new Equation is expressed as   

0.5 ( )s s
j i j i j iu u u u h θ θ− = − − +                      (3)

Therefore, the deformation of horizontal shear spring is listed as follow  
 

0.5 ( )j i j iu u u hδ θ θ= − − +                              (4)
Moreover, if letter m denotes any spring, the axial displacement of end of number m spring is expressed as  i

0.5 (1 cos )s
im i m i iv l hθ vθ= − + − +                         (5)

j end of number m spring is expressed as    The axial displacement of 

0.5 (1 cos )s
jm j m j jv l hθ vθ= − − − +                         (6)

Where is distance between number m spring and center axis of figure; is positive value when a spring 
locates in the right of center axis; else, is negative value. 

ml ml

ml
 Eq. (5) is subtracted from Eq. (6), the axial deformation of m spring is expressed as 

( ) 0.5 (1 cos ) 0.5 (1 cos )m i j m j i jv l v v h h iδ θ θ θ θ= − + − − − − −        (7)

cos 1,cos 1i jθ θ= =Based on the small deformation, there are . The above equation can be simplified to  

( )m i j m jv l v ivδ θ θ= − + −                               (8)
* * * * * *{ } { , , , , , }T

i i i j j ju v u v *θ θΔ =If the virtual displacement of model is , virtual work under outside force is 
expressed as 

*{ } { }TW = Δ F

*
m m

                                   (9)
Otherwise, virtual work under internal force and virtual displacement is expressed as  

*

1

n

h vm
m

U k u u k v vδ δ δ
=

= +∑ δ

*

                            (10)

Where  is the stiffness of horizontal spring; is axial stiffness of  spring. According to virtual work 
principle, the following equation is obtained.  

hk vmk m

* *

1
{ } { }

n
T

h vm m m
m

F k u u k v vδ δ δ
=

Δ = +∑ δ                          (11)

By introducing Eq.(4) and Eq.(8) into Eq.(11) and integrating, Eq.(11) is then simplified to 
{ } [ ]{ }F K= Δ                                       (12)

In which element stiffness matrix is shown as follow: 
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3. STIFFNESS OF VERTICAL AND HORIZONTAL SPRINGS  

According to Timoshenko beam theory and virtual work principle, stiffness of vertical and horizontal 
springs can be deduced. Timoshenko beam has flexural, transverse and axial deformation [9]. Transverse 
deformation perpendicular to neutral axis keeps plane and the relation of stress and strain follows small 
deformation theory. Thus, axial displacement of random point in the beam is expressed as  

0( , ) ( ) ( )u x z u x z xθ= − ⋅                           （14）
Where,  and ( )xθ0 ( )u x  are the displacement and angle in the neutral axis of the point, respectively. 

Besides, the relative angle of the point is expressed as 
/ ( )dw dx xθ β= +                             （15）

βWhere  is the angle caused by shear deformation. 

xε xzγAccording to small deformation theory, the axial strain  and shear strain is respectively expressed as 

0
x

duu dz
x dx dx

θε ∂
= = −
∂

                           （16）

xz
u w dw
z x dx

γ θ β∂ ∂
= + = − + =
∂ ∂

                   （17）

According to energy conservation law, equation of strain energy on beam is shown as follow  

0
( ) (

h

x xzv
)x dv w q dxδ σ δβ τ δ⋅ + ⋅ = ⋅∫ ∫                   （18）

Where is the distribution load of beam. q
   The transverse displacement , axial displacement  and angle w u θ  are expressed by linear 
interpolation function. Inner displacements of an element can be expressed as  

1 2

1 2

1 2

0 0 0 0
0 0 0 0
0 0 0 0

w N N
u N N N

N Nθ

⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥= Φ = Φ⎨ ⎬ ⎢ ⎥
⎪ ⎪ ⎢ ⎥⎩ ⎭ ⎣ ⎦

           （19）

1 (1 ) / 2N ξ= − 2 (1 ) / 2N ξ= +Where,  is matrix of shape function and N ξ,，  is nature coordinate of an 

element. Here, displacement vector of a node is expressed as
T

i i i j j jw u w uθ θ⎡ ⎤Φ = ⎣ ⎦ .  

Axial and shear strain of any point of a element is respectively expressed as   
0 1 1 2 20 0x a

du dN dN dN dNdz z z
dx dx dx dx dx dx

θε ⎡ ⎤= − = − − Φ =⎢ ⎥⎣ ⎦
B Φ          （20）

1 2
1 20 0 s

dN dNdw N N
dx dx dx

β θ ⎡ ⎤= − = − − Φ =⎢ ⎥⎣ ⎦
B Φ

) 0δ =

sK+

           （21）

Based on Eq.（18）-（21）, the following equation is obtained as follow. 

0
( ) (

hT T T T T T
a a s sv

B EB B GB dv N q dxδ Φ Φ +Φ Φ − Φ∫ ∫           （22）

Based on Eq.（22）, the stiffness matrix of an element is obtained as follow. 
[ ] T T

e a a s s av
K B EB dv B GB dv K= + =∫                      （23）

Where, is axial and flexural stiffness matrix，aK sK is shear stiffness matrix. 
With disperse sum method instead of integral method，the tension stiffness  and shear stiffness 

 of m layer are expressed as 
vmk

vmk
/vm m mk E A l=                             （24）
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Where is the sum area of concrete, steel bar and plasterboard. mA
/s sk GA l=                               （25）

sAWhere  is effective shear area. 
MAccording to stress integral, the axial force , momentN  and shearQ  of an element are respectively 

expressed as  
( ) ( )x a m mj mi m m i jv v

N dv EB dv k u u k Zσ θ θ= = Φ = − + −∑ ∑∫ ∫           （26）
2( ) ( )x a m m mj mi m m iv v

M zdv EB zdv k z u u k Z jσ θ θ= = Φ = − + −∑ ∑∫ ∫       （27）

[( ) 0.5 ( )]xz s h j i iv v
Q dv GB dv k w w h jτ θ θ= = = − − +∫ ∫                   （28）

MEq. (27)-(28) shows that the axial force and momentN  of an element are only relevant to axial 
stiffness, displacement and angle of an element and irrelevant to shearing deformation. 

4 CONSTITUTIVE MODEL OF MATERIAL 

4.1Constitutive Model of Steel Reinforcement 

Bilinear elasto-plastic model of steel reinforcement is adopted and the ratio of tangent elastic modulus 
after reinforcement yield to initial elastic modulus is 0.01. 

4.2 Constitutive Model of Concrete 

Constitutive model of uniaxial stress on plain concrete is used to analyze concrete’s contribution to 
stiffness of vertical springs in computational model. Constitutive model of biaxial compression of concrete is 
used to analyze the shear of horizontal spring. 

4.3 Constitutive Model of Plasterboard 

   Constitutive model of plasterboard is based on experimental results. The relation between stress and 
strain of plasterboard is expressed as: 
 (1) The relation between stress and strain under compressive state is listed as follow   

62 10 6600 0.0161 ( 0.0015)
5 (0.0015 0.0025)

p p p p

p p

σ ε ε ε

σ ε

⎧ = − × + − ≤⎪
⎨

= < <⎪⎩
          (29)

(2) The relation between stress and strain under tension is listed as follow   
3712 ( 0.0003)
79 1.09 (0.0003 0.008)

pt pt p

pt pt pt

σ ε ε

σ ε ε

⎧ = ≤⎪
⎨

= + < <⎪⎩
                  (30)

5 SKELETON CURVES OF GFRP FULLY FILLED WITH REINFORCED CONCRETE  

5.1 Skeleton Curve of Vertical Spring of GFRP Fully Filled with Reinforced Concrete  

Skeleton curve of vertical spring of model is multi-line, as shown in Fig.4, parameters of which are 
defined as follow. 
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5.1.1 Parameters of vertical spring in tension 

(1) Stiffness of initial stage is expressed as        

0

0.8p ps s
pe

E AE AK
h hψ

= + ×                             (31)

py pd hε= −                                                         (32)

sEIn which,ψ  is inhomogeneous coefficient of reinforcement between tension cracks, is elastic modulus of 
steel, and  are respectively elastic stiffness and deformation of vertical springs before tension 

destroy of plasterboard,  is the elastic modulus of plasterboard,  is transverse area of plasterboard，

 is the strain under tension destroy,0.8 is reduction coefficient with cooperative work between 
plasterboard and concrete columns. 

pek pyd

pE pA
43 10pε
−= ×

(2) Stiffness after plasterboard failure is expressed as  

'
0

s s
se

E AK
hψ

=                                   (33)

'
0 y

sy
s

hf
d

E
ψ

=                                    (34)

Where 'ψ  is asymmetry coefficient of reinforcement between tension cracks after plasterboard failure. 

(3) Stiffness after reinforcement yield is expressed as 
0.01syK seK=                                   (35)

5.1.2 Parameters of vertical spring in compression 

 (1) If concrete, plasterboard and reinforcement yield at the same time, the stiffness of vertical spring is 
expressed as  

( pc
c c p s s

y y

ffK A A A E
f f

= + + ) / h                       (36)

y
cy sy

s

f
d h

E
ε= − = − h                                                  (37)

 
Where  and  are respectively elastic stiffness and yielding deformation of vertical spring in 

compression,
cK cyd

yf  is yield strength of reinforcement,  is transverse area of concrete columns；  is 
transverse area of plasterboard. 

cA pA

(2) Compression stiffness of vertical springs after reinforcement yields. 
0.02cy cK K=                                    (38)

5.2 Skeleton Curve of Horizontal Spring of GFRP Fully Filled with Reinforced Concrete 

Skeleton curve of horizontal spring of GFRP fully filled with reinforced concrete is symmetrical multi 
line, as shown in Fig.5. 
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（1） Initial shearing stiffness of a horizontal spring is expressed as  

0 vpc
s

v

fGAk
h f

= ×                                   (39)

In whichG is elastic shearing modulus of concrete；  is transverse area of concrete；h  is story height；cA vpf

F

is shearing strength of GFRP fully filled with reinforced concrete； vf  is shearing strength of GFRP. 

（2）shearing stiffness after plasterboard cracking 

yp c
s

y

VGAk
h U

= =                                 (40)

which , y cV GA pγ=  is yield shear of GFRP fully filled with reinforced concrete，U y yhγ=

p

 is yield shearing 

displacement， 0.9yγ γ=  is yield shearing strain， pγ  is peak value of shearing strain；G is initial shearing 
modulus of concrete. 

(3)Shearing stiffness of GFRP fully filled with reinforced concrete after reinforcement yields. 
0.01y p

s sk = k                                    (41)

6 TEST PROOF 

According to experimental result of literature［1，3］，push-over analysis of GFRP fully filled with 
reinforced concrete is carried out with the above multi-component model. The relation of experimental and 
numerical values between horizontal force and displacement at the top of GFRP fully filled with reinforced 
concrete is shown in Fig.6. 

Fig.6 shows that calculating results are close to experimental results and, especially, the match of 
experimental result and numerical value at the initial stage is good. Partial experimental results deviate from 
calculating results at the limit load stage. As a whole, calculating results can meet requirement of engineering 
calculation. Adopting multi component model in analyzing mechanical properties of GFRP fully filled with 
reinforced concrete is effective. 

We also find in calculation and test that the change of concrete strength produces small influence on 
shear capacity of GFRP fully filled with reinforced concrete. GFRP plays an important in resistance shear. 
The change of reinforcement area brings obvious change to the skeleton curve of GFRP fully filled with 
reinforced concrete. 

cydmind
d

Fcy

maxdsydpy d

Fsy

Fpy

Fmax

ksy

kse

kpe

kc

kcy

Fig.4 Skeleton curve of vertical 

v
maxv
F

v
vmax

y

v

v
y

p

p

pu u uy max

umax uy up

ks 

y

s k
p

s k
0

Fig.5 Skeleton curve of horizontal spring   

 7



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

 

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Lo
ad

 /k
N

Displacement /mm

 numerical value of sw-3
 experimental value of sw-3
 numerical value of sw-4
 experimental value of sw-4

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

Lo
ad

 /k
N

DIisplacement /mm

 experimentical value of sw-1
 experimentical value of sw-2
 numerical value

(b)
(a) 

 
 

Fig.6 Relations between experimental result and numerical value 
on sw-1,sw-2 ,sw-3,and sw-4 

7 CONCLUSIONS 

（1）Adopting improved multi component model in analyzing mechanical properties of GFRP fully filled 
with reinforced concrete is effective. The calculating elements can be adjusted in accordance with calculating 
precision. Multi component model can be used to study other material composite wall. 
（2）Inner springs are located at the Gauss point which can improve calculating efficiency and precision. 
（3）The change of concrete strength produces small influence on shear capacity of GFRP fully filled with 
reinforced concrete. GFRP plays an important in resistance shear. The change of reinforcement area brings 
obvious change to the skeleton curve of GFRP fully filled with reinforced concrete. 
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