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ABSTRACT : 

Objective of this paper is to present experimental information about the behavior of square CFT columns subjected 
to eccentric compression with double curvature deformation, to investigate validity of the current design formula 
for slender CFT columns, meanwhile to study its applicability to the middle-length columns. 
 
Forty-three square CFT columns were fabricated and tested. The experimental variables among the tests are, 1) the 
buckling length to depth ratio of the column, 2) the concrete strength, 3) the moment gradient which deforms the 
column into double curvature, and 4) the eccentricity of the axial load. 
 
Experimental results have indicated that the flexural strength of slender square CFT columns increases with the 
concrete strength and the moment gradient. Comparison between the test results and the theoretical ones predicted 
by the current design code has shown that for the slender square CFT columns with the buckling length to depth 
ratio of 20, the current design formula could satisfactorily well predict the flexural strength in spite of the degree of 
moment gradient. For the middle-length square CFT columns with the buckling length to depth ratio of 10, 
however, the current design formula overestimates the flexural strength when the column was under eccentric 
compression without moment gradient, i.e. under pure bending. On the other hand, for the middle-length columns 
under eccentric compression with moment gradient, the current design formula could be applied to evaluate their 
flexural strength with satisfactory accuracy. 

KEYWORDS: Concrete-filled tubular column, Slenderness ratio, Double curvature deformation, 
Eccentric compression, Square column  

 
1. INTRODUCTION  
 
In the current design standards for steel reinforced concrete structures (hereafter refereed to as SRC standards) and 
the design guideline for concrete-filled tubular structures (hereafter refereed to as CFT guideline) by the 
Architectural Institute of Japan, the ultimate capacity of a steel-concrete composite slender column is calculated by 
simply superimpose the capacities of the concrete column and the steel column (AIJ, 2001; AIJ 1997). This simple 
superimposition method has such advantages as to keep continuity in the calculation of capacity for the short and 
the slender columns, and to contain the up-to-date information on each component, while the design formula 
becomes inevitably complicated. In addition, for the columns under concentric compression, the current design 
standards not only provides calculation equations for short and slender columns with slenderness ratio Lk/D less 
than and equal to 4 and larger than and equal to 12, respectively, but also recommendation for the calculation for 
the middle-length column with Lk/D varying between 4 and 12. However, for the columns under combined flexure 
and axial compression, the current SRC standards only shows capacity design formulae for short and slender 
column, and approximates the calculation for the middle-length column by applying the equation for the short 
column, hence resulting discontinuity in the design equation. 
 
As to the capacity design equation for the middle-length columns with Lk/D varying between 4 and 12, Chung et al 
[2004] haves proposed a method to obtain the ultimate capacity via linear interpolation between the short and the 
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slender column. This method, however, involves tedious calculation procedure, while its concept is clear and 
mathematical expression is simple. Kido et al [2005] have also proposed a theoretical approach for the calculation 
for the middle-length columns, but in their proposal there is still discontinuity in the calculation. 
 
Fujinaga et al [2005] have recently proposed a simple method for the middle-length CFT column. In this method, 
the ultimate capacity for the middle-length columns is calculated by linear interpolation between the short and the 
slender column. Nevertheless, validity of their proposed method has not yet been verified with experimental results, 
neither the details of the moment modification factor CM were mentioned in the method. 
 
On the other hand, experimental study on effects of the moment gradient in the columns under double curvature on 
the ultimate capacity is scarce. While Kilpatrick et al [1997] have conducted systematic tests on the circular CFT 
columns to investigate the effect of the moment gradient; there are no experimental results of square CFT columns 
available. Furthermore, the moment amplification factor CM due to the moment gradient for the middle-length 
column has not yet been investigated. 
 
Objectives of the research is to obtain experimental information for the behavior of square CFT slender and 
middle-length columns under double curvature deformation, and to investigate validity of the previous calculation 
methods through comparing the experimental results with the theoretical predictions. 
 
 
2. OUTLINES OF THE CURRENT DESIGN FORMULAE 
 
2.1. Capacity Equations for the CFT Columns under Combined Flexure and Axial Compression 
According to the current SRC standards, ultimate flexural strength of the CFT columns under combined flexural 
and axial load can be obtained as follows: 
  
(1) For the column with Lk/D ratio less than and equal to 12 
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(2) For the column with Lk/D ratio larger than 12 
 

(i) When  NU < cNcU  or  MU > sMU0 (1 - cNcU / Nk) / CM 
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(ii) When  NU > cNcU  or  MU < sMU0 (1 - cNcU / Nk) / CM 

     
⎪⎭

⎪
⎬

⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

+=

Mk

cUc
UsU

UscUcU

CN
N

MM

NNN
11

                                                          (2.3) 

 
where cNU, cMU, sNU, sMU are ultimate compressive strength and ultimate flexural strength of the filled concrete 
section, and those of the steel tube, respectively, sMU0 is ultimate flexural strength of steel tube under pure bending,  
Nk is Euler’s buckling load of the CFT column, cNcU is ultimate compressive strength of the filled concrete section, 
and CM is the moment amplification factor. 
 
2.2. Moment Amplification Factor CM
In the current SRC standard, the formula recommended in the plastic design guideline by the AIJ [AIJ, 1975] is 
applied to calculate the moment amplification factor in the form of 
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where M1, M2 are the larger absolute end moment and smaller end moment, respectively, cE and sE are the Young’s 
modulus of concrete and of steel, respectively, cI, sI are moment inertia of concrete and of steel, respectively, lk is 
buckling length of the column. 
 
2.3. Strength of Middle-length Column Calculated by Linear Interpolation 
In the AIJ design formula, the boundary of short column is Lk/D=4, and the boundary of slender column is Lk/D=12. 

Then the flexural strength for middle-length 
column (4<Lk/D<12) can be easily calculated by 
using linear interpolation method. 

e 1 e 2 β c σ B N M=N ･e 1

(mm) (mm) (=e 2/e 1)  (N/mm2) (kN)  (kNm)
R20-27-C 0 0 - 29.1 835 0.0
R20-27-10-1.0(+) 10 1.0 585 5.8
R20-27-10-0.5(+) 5 0.5 627 6.3
R20-27-10-0.0 0 0.0 671 6.7
R20-27-10-0.333(-) -3.33 -0.333 711 7.1
R20-27-10-0.667(-) -6.67 -0.667 738 7.4
R20-27-10-1.0(-) -10 -1.0 823 8.2
R20-27-30-1.0(+) 30 1.0 440 13.2
R20-27-30-0.5(+) 15 0.5 479 14.4
R20-27-30-0.0 0 0.0 552 16.6
R20-27-30-0.333(-) -10 -0.333 574 17.2
R20-27-30-0.667(-) -20 -0.667 620 18.6
R20-27-30-1.0(-) -30 -1.0 665 19.9
R20-27-100-1.0(+) 100 1.0 222 22.2
R20-27-100-0.5(+) 50 0.5 265 26.5
R20-27-100-0.0 0 0.0 307 30.7
R20-27-100-0.333(-) -33.3 -0.333 328 32.8
R20-27-100-0.667(-) -66.7 -0.667 325 32.5
R20-27-100-1.0(-) -100 -1.0 336 33.6
R20-60-C 0 0 - 61.3 1106 0.0
R20-60-30-1.0(+) 30 1.0 550 16.5
R20-60-30-1.0(-) -30 -1.0 878 26.3
R20-60-100-1.0(+) 100 1.0 250 25.0
R20-60-100-0.0 0 0.0 354 35.4
R20-60-100-0.667(-) -66.7 -0.667 372 37.2
R20-60-100-1.0(-) C -100 -1.0 385 38.5
R10-27-C 0 0 - 35.9 1016 0.0
R10-27-30-1.0(+) 30 1.0 606 18.2
R10-27-30-0.5(+) 15 0.5 650 19.5
R10-27-30-0.0 0 0.0 695 20.9
R10-27-30-0.333(-) -10 -0.333 722 21.7
R10-27-30-0.667(-) -20 -0.667 31.1 737 22.1
R10-27-30-1.0(-) -30 -1.0 776 23.3
R10-27-100-1.0(+) 100 1.0 281 28.1
R10-27-100-0.5(+) 50 0.5 328 32.8
R10-27-100-0.0 0 0.0 35.9 351 35.1
R10-27-100-0.333(-) -33.3 -0.333 372 37.2
R10-27-100-0.667(-) -66.7 -0.667 372 37.2
R10-27-100-1.0(-) -100 -1.0 34.7 385 38.5
R10-60-C A 0 0 - 1452 0.0
R10-60-100-1.0(+) 100 1.0 324 32.4
R10-60-100-0.0 0 0.0 406 40.6
R10-60-100-1.0(-) -100 -1.0 430 43.0
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Table 1 Experimental Condition and Result 

 
 
3. ECCENTRICALLY COMPRESSIVE 
TESTS UNDER DOUBLE CURVATURE 
DEFORMATION 
3.1. Outlines of Specimen 
A total of forty-three columns were fabricated and 
tested. Figure 1 shows details of the test columns. 
All of the specimens were made of square steel 
tube with dimensions of 125x125x3.2mm 
(STKR400) and filled with concrete having 
targeted compressive strength of 27 N/mm2 or 60 
N/mm2. The experimental variables are; 1) the 
Lk/D ratio (20 and 10), the concrete strength, the 
moment gradient expressed in term of M2/M1 ratio, 
and the initial eccentricity e1 (100, 30, 10 mm). 
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Figure 1 Specimen (mm) 

e1, e2: Eccentricity of upper end and bottom end, respectively, 
cσB: Compressive strength of concrete,  
N: Experimental maximum strength 
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According to the initial eccentricity, the specimens were divided into three 
types. In Type A specimen, there are no steel plates at both ends of the column. 
On the other hand, in Type B specimen only one steel plate of 25mm in 
thickness was welded to the end of the column where the effect due to extra 
end confinement is significant, while each C type specimens had end plates at 
both ends. Table 1 shows experimental conditions along with the primary test 
results of all specimens. 
 
The concrete strengths at the stage of testing are given in Table 1. Figure 2 
displays the complete stress-strain curve of the steel tube. The compressive 
stress-strain curve shown in Figure 2 was obtained by concentric compressive 
test on the short steel tube, while the tensile stress-strain curve was obtained 
by conducting tensile test of three standard coupons. The dotted line in Figure 
2 expresses result where the axial compressive strain of the steel tube was 
measured by strain gages. 
 
3.2 Testing Apparatus 
Figure 3 shows the test apparatus, while Photos 1 displays detail of end 
condition. Each specimen was at first loaded concentrically in elastic by a 
2MN capacity test machine. After verifying the axial load had been applied in 
the center of the column via the records of the strain gages, the knife-edge (see 
Photo 1) at the end of the column was slid to the targeted eccentricity, and 
then the eccentric loading was applied till large deformation. In addition to 
two displacement transducers measuring the axial deformation, eight 
displacement transducers were used to measure the lateral displacements along 
the length of the column. A total of twenty two strain gages were embedded on 
the surface of the steel tube to measure the steel strain. 
 
 

Yield stress Tensile strength Yield stress Compressive strength

(mm) (mm) (N/mm2) (N/mm2) (N/mm2) (N/mm2)
125.1 2.99 358 452 - 318

Tension test Compression test
Depth Thickness

Table 2 Mixture of Concrete 
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Figure 3 Loading condition 

2MN loading mashine

Photo 1 Loading situation

Photo 2 Details of loading 
equipment 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 

 

(a) Lk/D=20 (Slender column), cσB=27N/mm2
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(b) Lk/D=10 (Middle-length column), cσB=27N/mm2
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Figure 4 Comparison of strength (continue) 

4. EXPERIMENTAL RESULTS AND COMPARISON WITH THEORETICAL PREDICTIONS  
4.1 Moment Versus Axial Load Relationship 
Figure 4 shows experimental flexural strengths along with several theoretical predictions. In Figure 4, the black 
circles express the experimental results, while the theoretical results are represented by several curves; the black 
solid line corresponds to the flexural strength of the CFT column calculated by the SRC standard, where effect of 
the slenderness has been taken into consideration, and the dotted line expresses the ultimate flexural strength of the 
CFT section. For the middle-length columns, a black line is further plotted as shown in Figure 4 (b) and (d) to 
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represent the flexural strength computed by linear interpolation between the flexural strengths of short and slender 
columns by SRC standard. 
 
As obvious from Figure 4 (a) and (c), the theoretical results calculated by current SRC standard agree well with the 
experimental results of the slender columns in spite the concrete strength, while the theoretical predictions tend to 
underestimate the experimental ones as the moment gradient becomes larger.  
 
For the middle-length columns, however, the SRC standard seems to overestimate the experimental result for the 
columns under pure bending,, i.e. without moment gradient. This discrepancy is mainly due to that in the SRC 
standard, the flexural strength of the middle-length column with Lk/D ratio varying between 4 and 12 is computed 
by using the equation for the short column. It is apparent, on the other hand, that the theoretical results calculated 
by linear interpolation could conservatively predict the test results in spite of the moment gradient.  
 
From the above-mentioned comparisons and observation, one can see that flexural strength of the middle-length 
square CFT column can be reasonably predicted by linear interpolation between the flexural capacities of the short 
and slender columns calculated by the current SRC standard. 
 
To better understand difference 
between the experimental and 
theoretical flexural strengths, 
relationships between the excess 
ratios and the excess angles of 
flexural strength, which are 
defined in Figure 5, are plotted in 
Figure 6. For the slender columns 
with Lk/D ratio of 20, the ratio of 
the experimentally measured 
strength to the theoretical results 
varies between 1.02 and 1,24, 
having an average of 1.13. For the 
middle-length columns with Lk/D 
ratio of 10, the flexural strength 
ratio varies between 0.90 and 1.29 
when the SRC equation for short 
column is directly applied to 
calculate the flexural strength. On 
the other hand, the linear 
interpolation method can give a 
more reasonable prediction to the 
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Figure 4 Comparison of strength (the rest) 
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flexural strength for the middle-length CFT columns, with the strength ratio varying between 1.05 and 1.29 and an 
average of 1.18. 
 
4.2 Moment Amplification Factor CM  
In order to obtain experimental results for the moment amplification factor, the experimental moment versus axial 
load curves were at first approximated by conducting regression analysis on the experimental flexural strengths for 
each moment gradient as shown in Figure 7. Then the experimental moment amplification factors were calculated 
as the difference between the experimentally measured strength and the strength drawn from the approximated 
moment-axial load curve shown in Figure 7. 
 
Figure 8 shows experimental moment amplification factors along with the theoretical curves recommended by the 
AIJ plastic design guideline for steel structures [AIJ, 1975]. The bold solid lines and dotted lines in Figure 8 
represent equation for the moment amplification factor based on elastic theory and the approximate equation, 
respectively. Axial force is normalized by Euler’s load (see Eqn. (2.4)). 
 
For the slender columns with Lk/D ratio of 20, in the case of Fc=27N/mm2, the approximate equation agreed well 
with the test results as the moment ratio M2/M1 is equal to -1.0. As becomes larger, i.e. the moment gradient 
becomes smaller, the discrepancy between the experimental and the theoretical results becomes wider, but the 
approximate equation could still trace the tendency of the moment amplification factor along with the axial load.  
In the case of Fc =60N/mm2, although the experimental data is few, the approximate formula traced the tendency of 
moment amplification factor 
CM as well as in the case of 
Fc=27N/mm2.  
 
For the middle-length columns 
with Lk/D ratio of 10, the 
experimental moment 
amplification factors were less 
than the calculated results 
obtained either by the elastic 
theoretical equation or by the 
approximate equation, which 
means that the design formula 
for the slender CFT columns 
recommended in the current 
standards would underestimate 
the axial capacity of the 
middle-length CFT columns. 
 
 

(a) Lk/D=20 (Slender column) (b) Lk/D=10 (Middle-length column)
Figure 5 Definition of excess ratio 

Figure 6 Comparison about excess ratio 
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Figure 8 Comparison of moment modified factor CM



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 

 

5. CONCRUDING REMARKS 
Experiments of slender and middle-length square CFT columns under eccentrically compression with 
doublecurvature deflection were conducted to examine the effect of moment gradient on the flexural strength of 
column. Comparing the experimental results with the theoretical predictions leads to the following conclusions: 
 
1) For the slender square CFT columns with the buckling length to depth ratio of 20, the current design formula 

could satisfactorily well predict the flexural strength in spite of the degree of moment gradient. 
2) For the middle-length square CFT columns with the buckling length to depth ratio of 10, the current design 

formula overestimated the flexural strength when the column was under eccentric compression without moment 
gradient, i.e. under pure bending. On the other hand, for the middle-length columns under eccentric compression 
with moment gradient, the current design formula could be applied to evaluate their flexural strength with 
satisfactory accuracy. 

3) Moment amplification factor, which was calculated backward from experimental result, compared well with the 
elastic theoretical and approximate equations. Approximate equation predicts well the results for the columns 
with Lk/D= 20 and M2/M1=-1.0. However, for the columns with Lk/D= 10, accuracy is much lower regardless of 
the moment gradient. 
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