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ABSTRACT: 
 
In this paper, we present the seismic design load distribution. First, the equation of the distribution of seismic 
load in the design is presented. It is based on the assumption that the velocity spectrum of ground motion is 
independent of the natural period, and it is deduced from the maximum shear response of the elastic shear bar 
with both uniform stiffness and mass distributions. Then, two equations were selected from the equations with 
respect to the seismic design load distributions that have already been proposed in Japan. A comparison of these 
equations was carried out with regard to both leveling of the story drift angle distribution and minimization of 
the maximum story drift angle in all the stories of a multistory frame. 
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1. INTRODUCTION 
 
When multistory frame structures with a relatively weak story are subjected to severe earthquakes, the seismic 
deformation concentrates at the story, resulting in structural collapse. Recent earthquake-resistant designs face 
serious problems that make story deformation and damage uniform over the height of the structure.  
In the current seismic code of Japan [BCJ 1997], the story strength is indicated by the yield shear force 

  

! 

Qyi , 
described as  
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Qyi = Ci Wi = Ci " i WT  (1.1) 
 
where 
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W
T

 is the total weight of the structure, 
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W
i
 is the weight above the story, and 
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"
i
 is the value in which 
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W
i
 is divided by 
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W
T
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C
i
 is called the yield shear coefficient: it specifies the intensity and vertical distribution 

of the seismic load.  
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Here, 

  

! 

C
B

 is called the base shear coefficient; it is the shear coefficient of the bottom story. 
  

! 

A
i
 is the shear 

coefficient distribution (
  

! 

A
i
 distribution); it represents the vertical distribution of the seismic load. In this sense, 

many previous researches have analyzed the 
  

! 

A
i
 distribution from various viewpoints.  

In this paper, the equation of the distribution of the seismic load in the design was obtained based on a simple 
theoretical analysis. Then, two equations were selected from the equations obtained with respect to the 
distribution of the seismic loads that have already been proposed in Japan. A comparison between these 
equations was carried out.  
 
 
2. SHEAR COEFFICIENT DISTRIBUTION 
 
Researches investigating the distribution of the maximum shear force of a story in an elastic system and the 
optimum shear coefficient distribution in an elastoplastic system along the height in order to develop uniform 
plastic deformations for each story have already been conducted [Kobori et al. 1970] [Kato et al. 1977]. They 
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are summarized as follows.  
 
1. The shear coefficient distribution is plotted for a narrow range irrespective of the number of stories, 

stiffness distribution, and mass distribution, in case that the shear coefficient is expressed as a function of 
  

! 

"
i
 in which the weight above the story is divided by the total weight of the structure.  

2. The shear coefficient distribution, which was determined to make the damage distribution of a frame 
uniform, almost coincides with the story distribution of the maximum shear coefficient of an elastic 
structure, except for at the top story.  

 
The current seismic code of Japan is based on above-mentioned results. It is shown that the shear coefficient 
distribution for a story is a function of a value 

  

! 

"
i
 and the story shear coefficient distribution required in elastic 

design is the same that required in plastic design. 
It seems rational that the distribution of the design shear coefficient can be archived through a suite of numerical 
works using model-shear-type multi-lumped mass systems with sufficient degrees of freedom so as to obtain it 
as a function of 

  

! 

"
i
. In this sense, the seismic response analysis would have been performed on 20 or fewer 

mass types [Kato et al. 1977]. However, if an earthquake response analysis using a shear-type model with as 
many degrees of freedom can be obtained, then this procedure is more suitable with regard to a shear-type stick 
model (shear bar) with infinite number of mass. Further, according to the results obtained from researches 
involving similar conditions to the ones mentioned above, if the distribution of the design shear 
coefficient—expressed as a function of 

  

! 

"
i
—is not influenced by the stiffness and mass distributions, it is 

simplistic; further, an elastic solid in which the mass is thoroughly distributed can be employed. 
Therefore, the maximum shear response is deduced by means of an elastic shear bar with both uniform stiffness 
and mass distributions. In this study, the maximum shear response obtained by means of an elastic shear bar is 
mainly assumed to be an object; therefore, the intensity of the maximum shear response does not pose a 
problem. This implies that the maximum shear response can be investigated by means of the elastic structure 
because of the consideration that the shape of the load distribution of the elastic structure is similar to an 
elastoplastic structure.  
Consider an elastic shear bar of length   

! 

H , as shown Fig. 2.1, is subjected to ground motion 

! 

˙ ̇ y . It is assumed 
that the elastic shear bar is uniform with shearing stiffness   

! 

G  and distributed mass 

! 

" . When the damping is 
neglected, the equation of dynamic equilibrium can be expressed as [N. M. Newmark et al. 1972] 
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"
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Figure 2.1 Elastic shear bar 
 

where vectors   

! 

x  and 

! 

"  denote the coordinates along the height and displacement, respectively. 
In this analysis, we assume free vibration conditions, where the external force term—the right side of the above 
expression—is neglected. When solving this under the boundary condition, the natural circular frequency 

  

! 

"
k
, 

natural period 
  

! 

T
k
, and natural mode of vibration     

! 

fk (x)  can be expressed as follows: 
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! 

fk (x) = sin
" 2k #1( )x

2H
 (2.4) 

 
The displacement     

! 

"(t ,x) is shown as the sum of each mode of vibration.  
 

 
    

! 

"(t ,x) = ak

k =1

#

$ (x) fk (x)  (2.5) 

 
By substituting Eqn. 2.5 into Eqn. 2.1, we obtain the normal modes of vibration that are orthogonal. Further, by 
considering viscous damping, it can be shown that the motion of the system can be described by the following 
equation for the k-th mode of vibration: 
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where 

  

! 

"
k
 and 

  

! 

"
k
 denote the damping ratio and participation factor in the k-th mode of vibration and 

  

! 

"
k
 is 

expressed as 
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where if the simulated velocity response spectrum of 

! 

˙ ̇ y  is expressed as a function 
    

! 

S
V

(T )  with period   

! 

T , the 
maximum response 

    

! 

ak ,max
 of 

    

! 

a
k
(t) can be described by the following equation: 
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The shear force     

! 

Q(t ,x) used for analytical purposes is described by the following equation: 
 

 
    

! 

Q(t ,x) = ak (t)

k =1

"

# G
dfk (x)

dx
 (2.9) 

 
The maximum shear force     

! 

Qmax (x) can be expressed as the square root of the sum of the squares to obtain the 
maximum response.  
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It is assumed that the velocity response spectrum of ground motion is independent of the natural period.  
 

 
    

! 

S
V

(T ) = S
VO

(constant) (2.11) 
 
Therefore, Eqn. 2.10 becomes 
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The above equation can be resolved by using the following series formulae:  
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The shear coefficient is obtained from the maximum shear force     

! 

Qmax (x) (Eqn. 2.12) divided by the weight 
above this point     

! 

g"(H # x)  (g denotes the acceleration due to gravity). Further, the shear coefficient 
distribution 

  

! 

A
i
 is obtained by division with the base shear coefficient as follows.  

 

 
    

! 

Ai =
Qmax (x)

g" H # x( )
/

Qmax (0)

g"H
= 1 /

H # x

H
 (2.13) 

 
Here, the dimensionless height 

  

! 

"
i
 is 

 

 

    

! 

" i =
g#dx

x

H

$

g#dx
0

H

$
=

H % x

H
 (2.14) 

 
Eqn. 2.13 can be written as  

 
 

    

! 

A
i
= 1 / "

i
 (2.15) 

 
Eqn. 2.15 represents the distribution of the maximum shear force response of a story in an elastic structure. In a 
frame in which the distribution of the yield strength of each story corresponds to Eqn. 2.15, the possibility of all 
the stories yielding at the same time can be expected. This can be attributed to the assumption that the velocity 
response spectrum of the ground motion is independent of the period. Eqn. 2.15 tends to exaggerate the 
influence of a higher-mode response because the velocity response spectrum of ground motion has a 
characteristic of decreasing in proportion to the period in a short range of frequencies. 
 
 
3. ANALYSIS OF SHEAR COEFFICIENT DISTRIBUTION 
 
The proposed equation concerning 

  

! 

A
i
 can be used as an object of comparison as follows. 
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(1) The current seismic code of Japan [BCJ 1997] has the provision for the following equation that considers 

the dependence of the shear coefficient distribution 
  

! 

A
i
 on the fundamental natural period of vibration 

    

! 

T
1
.  

 

 
    

! 
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i
= 1+

1

"
i

#"
i

$ 

% 
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) 
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2T
1

1+ 3T
1

 (3.1) 

where 
    

! 

T
1

= 0.03H , H = height of the structure 
 
(2) The optimum shear coefficient distribution 

  

! 

A
i
 in order to develop uniform cumulative plastic deformation 

at each story was obtained through a trail-and-error dynamic response analysis [Kato et al. 1982]. 
 

 
    

! 

A
i
= 1+1.5927"

i
#11.8519"

i

2
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i

3

#59.4827"
i

4

+ 30.1586"
i
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 (3.2) 
where 

    

! 

"
i
= 1#$

i
 

 
(3) The shear coefficient distribution 

  

! 

A
i
 for this study is 

 
 

    

! 

A
i
= 1 / "

i
 (3.3) 

 
A comparison between these equations is carried out in Figure 3.1. There is a difference in the top story of 
approximately 0.2 or less, and the shear coefficient distribution obtained from Eqn. 3.3 tends to yield a large value. 
However, this is almost coincident, except for that around the top story. Although, for a 12-story system, Eqn. 3.1 
yields slightly larger values; for an 8-story system, Eqn. 3.1 and Eqn. 3.3 are equivalent; and for a 4-story 
system, Eqn. 3.3 yields a slightly larger value. That is the reason why the 

  

! 

A
i
 distribution obtained from Eqn. 

3.1 exhibits larger values near the bottom of the structure’s center, although the 
  

! 

A
i
 distribution of Eqn. 3.3 

tends to be yield slightly larger values near the top story. 
 

 
 

Figure 3.1 Comparison of story shear coefficient of the story for Eqn. 3.1, Eqn. 3.2, and Eqn. 3.3 
 

3.1. Analysis Variables 
The analysis is carried out for shear-type multi-lumped mass systems shown in Table 3.1. These are 4-, 8-, and 
12-story systems. These systems have the same height and weight for each story. The load–deformation relation 
for each story under monotonic loading is expressed by a bilinear relation, and the rigidity in the inelastic 
behavior is adjusted to 0, 1/3, and 2/3. The structural properties are determined using standard design 
procedures stipulated in the seismic code of Japan [BCJ 1997]. The standard shear force coefficient 

    

! 

C
0
 and 

yield story drift angle 
  

! 

Ry are listed in Table 3.1. The story drift angle reaches 
  

! 

Ry (1/200, 1/400) against the 
designed earthquake force profile with a standard shear force coefficient 

    

! 

C
0
 of 0.2. The shear coefficient 

distribution 
  

! 

A
i
 employs the three proposed equations described in the previous section, and they have been 

applied later to the name of the analytical systems. 
Figure 3.2 shows the correlation of the fundamental natural period 

    

! 

T
1
 of each system and the sum of the design 

shear force for all the stories. In the abscissa,   

! 

p  indicates the sum of the designed shear force 
  

! 

Qy of the story 

  

! 

"
i
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Table 3.1 Systems adopted in the analysis 

 
 

for each system according to the three 
  

! 

A
i
 distributions as the comparison object that were normalized with the 

sum of all the 
  

! 

Qy values of the systems set by using 
  

! 

A
i
 from Eqn. 3.3. 

The difference in the fundamental natural period 
    

! 

T
1
  by the 

  

! 

A
i
 distribution set is small (Figure 3.2). A 

decreasing trend can be recognized in 
    

! 

T
1
; that is, as the strength increases, the rigidity increases. The   

! 

p  values 
are in the range of 0.96 to 1.02; that is, the strength is almost equal to the system employing the 

  

! 

A
i
 

distribution. 
 

 
 
 
 
 
3.2. Dynamic Response Analysis 
Suites of ground motions used in the FEMA/SAC project [Somerville P, et al. 1997] were used for the dynamic 
response analysis of the systems. Here, 2 sets of 20 records were used that represent the probabilities of 
exceedance to be 10% and 2% in 50 years in the Los Angeles area (USA), denoted as the 10/50 and 2/50 record 
sets, respectively. For the first two modes, Rayleigh damping of 2% was adopted in the analysis. The P-

! 

"  
effect was not included in the analysis. 
Figure 3.3 shows the results when the system (F08k1d2) was subjected to all of the 40 ground motions in each 
of the 10/50 and 2/50 record sets as the example of the results. It shows the story distribution of the maximum 
story shear force 

  

! 

Qmax,i , normalized by the designed shear force for each story 
  

! 

Qy,i . Here, the intention is 
adjusted so as to make the overturning moment constant; the sum of the shear forces for each story finally 
becomes constant because the story height is fixed. 

Figure 3.2 Comparison of fundamental       Figure 3.3 Story distribution of the maximum story 
             natural period T1.                 shear force of the system (F08k1d2): (a) 10/50; (b) 2/50  
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! 

qi =
Qmax,i

Qmax,i

i=1

N

"
/

Qy,i

Qy,i

i=1

N

"
 (3.5) 

 
In Figure 3.3, the story distribution of the maximum shear force for each story fluctuates at every ground motion, 
and it fluctuates more significantly at the top story. This tendency is recognized in all of the systems (Table 3.1).  
 

 
 

Figure 3.4 Comparison of the maximum story drift angles (10/50 median and 84th percentile responses): 
(a) F12k0d2 system; (b) F08k0d2 system; (c) F04k0d2 system; 
 (d) F12k1d2 system; (e) F08k1d2 system; (f) F04k1d2 system 

 
Figure 3.4 shows the distributions of the maximum story drift angles of the system with the 10/50 record set 
expressed as their medians and 84th percentiles. Here, the median refers to the exponent of the mean of the 
natural logarithmic values of the data, and 84th percentile represents the median multiplied by the exponent of 
the standard deviation of the natural logarithmic values of the data. The standard deviation is referred to as the 
dispersion and is approximately equal to the coefficient of variation. 
The distribution of the maximum story drift angles is relatively uniform and close to unity for the systems in 
which the rigidity is 1/3 (inelastic behavior), regardless of the 

  

! 

A
i
 distribution. It suggests that these three 

equations of the 
  

! 

A
i
 distribution approximate the optimum shear coefficient distribution. Although the 

difference in the 
  

! 

A
i
 distribution set is not large, near the top story, the distribution of the maximum story drift 

angles is larger for the system that employs Eqn. 3.1 and the distribution of the maximum story drift angles is 
smaller for the system that employs Eqn. 3.3 (Figure 3.1). 
Table 3.2 shows the largest of the maximum story drift angles 

  

! 

R
max

 occurring in the corresponding story for all 
the systems described in Table 3.1. Further, in comparison to 

  

! 

R
max

 on the system set in the 
  

! 

A
i
 distribution 



The 14
th  

World Conference on Earthquake Engineering  
October 12-17, 2008, Beijing, China  
 
 
using the three equations as a comparison object, the minimum field is shown in gray. In Table 3.2, although the 
difference by the 

  

! 

A
i
 distribution set is not large, 

  

! 

R
max

 for the system that employs Eqn. 3.3 is the smallest in 
most sections. In particular, for the systems in which the rigidity is 0 (inelastic behavior) and the systems with 
several stories, the difference by the 

  

! 

A
i
 distribution set increases, and 

  

! 

R
max

 for the system employing Eqn. 
3.3 tends to become the smallest. Further, it is not evident that 

  

! 

R
max

 for the system that employs Eqn. 3.1 
expressing 

  

! 

A
i
 as a function of the fundamental natural period tends to become the smallest. 

 
Table 3.2 Comparison of the largest of the maximum story drift angles 

! 

R
max

 

 
 
4. CONCLUSIONS 
 
1. An equation for the seismic load distribution, 

    

! 

A
i
= 1 / "

i
, was obtained based on the assumption that the 

velocity spectrum of the ground motion is independent of the period. Further, it is obtained from the 
maximum shear response using the elastic shear bar with both uniform stiffness and mass distributions. 

 
2. It was clarified that the equation 

    

! 

A
i
= 1 / "

i
 is the most effective and useful, because it yields the least 

value of the largest of the maximum story drift angles 
  

! 

R
max

 occurring in the corresponding story; 
moreover, it has the simplest equation. 
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