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ABSTRACT: 

When assessing the seismic performance of existing reinforced concrete buildings designed according to obsolete 

codes, one can identify potentially dangerous situations that could result in catastrophic failures. A typical 

inadequacy lies in the so-called “strong beam-weak column” situation: columns are no so strength to force plastic 

hinge formation in beams and, if this is extended to all columns at a given floor, can lead to the development of a 

soft-storey mechanism. Such weaknesses should be eliminated by upgrading all weak columns in the zones of 

potential formation of plastic hinges so to increase their flexural capacity and to force plastic hinge formation in 

the beams. With this aim one or more layers of FRP could be wrapped longitudinally along the column at the end 

zones. Nevertheless, the flexural strengthening can reduce the element‟s deformation capacity. This paper, 

starting from previous authors works propose a simplified procedure for the assessment of flexural strength and 

deformation capacity of rc unstrengthened and FRP strengthened reinforced concrete rectangular columns. 

Approximate closed form equations are developed by which the flexural strength and section ultimate curvature 

are evaluated as a function of the normalized acting axial load and the geometrical and mechanical section‟s 

parameter. The proposed approach is compared with a fibre approach. 

 

KEYWORDS: RC columns, FRP–strengthening, interaction domain, biaxial bending, closed-form equations, 

seismic upgrade 

 

 

1. EXACT APPROACH 

 
1.1. Evaluation of section’s strength capacity 

 

Classical methods for check of RC members under combined biaxial bending and axial load are based on the 

construction of the 3D failure domain ( N , xM , yM ). The boundary of the failure domain (the so called 

„interaction failure surface’) defines the limit terns ( RdN , xRdM , yRdM ) that cause ultimate limit state 

achievement. Its construction is performed point by point by integration of stresses associated to the strain 

distribution, corresponding to a flexural failure mode for the section. Reinforced concrete section analysis at the 

ultimate limit state is based on the following usual hypotheses: 

 plane sections remain plane (linear strains), 

 perfect bond between steel and concrete, 

 no tensile strength in concrete, 

 non–linear stress–strain laws for steel and concrete. 

The strain state over the section is therefore uniquely defined by the concrete compression strain c  and by the 

steel tensile strain s . Flexural failure occurs when one of the following conditions is met: the concrete ultimate 

strain, 
maxc cu   , or the steel tensile ultimate strain,

maxs su   : 
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The limit terns SdN , xRdM , yRdM , corresponding to boundary points on the section failure surface are calculated 

continuously modifying the neutral depth for every value of the neutral axis angle and solving at each step the 

equilibrium equations:  

 
c s

Sd c c s sA A
N dA dA     (1.2)   

 

 
c s

xRd c c s sA A
M ydA ydA     (1.3)     

 

 
c s

yRd c c s sA A
M xdA xdA     (1.4)    

where c  is the concrete stress, s  is the stress in steel reinforcement, cA
 

is the concrete compressed area 

and sA the steel reinforcement area.  

 

1.2. Evaluation of section’s ultimate curvature at constant axial load 

 

Section curvature associated with an axial load and bending moment can be evaluated on the basis of the same 

hypothesis used for determination of resisting moments and from the requirements of strain compatibility and 

equilibrium of forces. The ultimate curvature, u , can be evaluated as:  

   cm
u

uh





                                           (1.5) 

where u  is the non dimensional neutral axis depth of the compressed zone at failure, h  is the section height, 

measured orthogonally to the neutral axis, and cm  is the strain at the extreme compressed fiber: 
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To evaluate the ultimate curvature the neutral axis depth, u , must be calculated by iteratively solving the 

translational equilibrium equation (1.2). 

 

 

2. APPROXIMATE APPROACH 

 
2.1. Evaluation of section’s strength capacity 

 

2.1.1. Unstrengthened sections 

Construction of the 3D failure domain involves some computational difficulties mainly due to the integration of 

stress over the compressive portion of concrete and to the analytical and graphical representation of the surface 

and the comparison with the acting external forces. A simplified method, which allows to avoid the numerical 

integration required for solution of the equilibrium equations, is fully described in Monti et al., 2006; it is based 

on the analytical approximation of the failure surface by sections at constant axial load proposed by Bresler, 

1960, and expressed as: 
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 (2.1)    

where uxm , uym  = normalized uniaxial resisting moments under the normalized applied axial load Sdn ; 0xm , 
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0 ym  = normalized resisting moments about the section main axis x, y , given by: 
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where: b  section width, h  section height, cdf design compressive strength of concrete (0.85 account for 

long–term loads),   exponent depending on the cross section geometry, the steel reinforcement percentage and 

the axial load Sdn . The   exponent is evaluated as a function of the cross–section‟s mechanical and 

geometrical parameters and the normalized applied axial load Sdn :  

 sysx
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where Sx , Sy = mechanical ratio of steel reinforcement laid parallel to x  and y  section axis given, 

respectively, by: 
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with SxA , SyA  = area of reinforcement laid parallel to x  and y  axis; ydf = design yield strength of steel. 

The values of parameters in the equation (2.3) have been obtained through the least–squares method; they are 

shown in Table 2.1.  

 

Table 2.1. Parameters for calculation of exponent for unstrengthened sections 

Sdn  c    
sx  sy    

> 0 1.45 -0.02 -0.06 0.03 -0.025 

= 0 1.35 -0.02 -0.03 -0.20  

< 0 1.70 -0.09 -0.01 -0.50 0.30 

 

Fig. 1 shows the comparison between the corresponding failure domains for several values of the basic 

parameters ( b h , sx , sy ,
 Sdn ). It can be seen that the simplified equations correctly represent the interaction 

diagram of the section.  

 

2.1.2. FRP-strengthened sections 

FRP–strengthened RC section analysis at the ultimate limit state is based on the same usual hypotheses adopted 

for the unstrengthened section, with the addition of the following: 

 perfect bond between FRP and concrete, 

 no compressive strength in FRP, 

 linear stress–strain law for FRP. 
The strain state over the section is uniquely defined by the concrete compression strain c  and by the FRP 

tensile strain f . Flexural failure occurs when one of the following conditions is met: the concrete ultimate 

strain, 
maxc cu   , or the FRP ultimate strain, 

maxf fd  : 
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The explicit relationship developed for the   exponent in equation (2.3) is here modified to include the FRP 

reinforcement mechanical parameters: 

                                fx fysysx
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where fx  and fy  are the mechanical ratio of FRP-strengthening laid parallel to x  and y  section axis 
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given, respectively, by: 
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with fxA , fyA =area of FRP reinforcement laid parallel to x  and y  axis; fdf = design strength of FRP. The 

values of the parameters in the equation (2.6) have been obtained through the least–squares method; they are 

shown in Table 2.2. 

 

Table 2.2. Parameters for calculation of exponent for FRP-strengthened sections 

Sdn  
c  

 sx  sy
 fx  fy    

> 0 1.2 -0.04 -0.06 0 0 0.02 -0.03 

 

Fig. 1 shows the comparison between the corresponding failure domains for several values of the basic 

parameters ( b h , sx , sy , fx , fy , Sdn ). It can be seen that the simplified equations correctly represent the 

interaction diagram of the section. 

 

 
Fig. 1. Comparison between exact (fiber method) and approximate approaches for an RC section under combined 

biaxial bending and axial load. 

 

2.2. Evaluation of section’s ultimate curvature 

 

The approximate approach for resisting moment evaluation can be extended to evaluation of section ultimate 

curvature. Section ultimate curvature associated to the acting axial load Sdn  and resisting bending moment 

Rdm  can be evaluated by: 
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where: xu , yu   section curvatures about the section main axis related to the components xRdm , yRdm  of 

the normalized resisting bending moment Rdm  under the acting axial load Sdn ;  0x u Sdn ,  0y u Sdn   

section curvatures about the section main axis at ultimate. The u  exponent can be evaluated as a function of 

the cross-section‟s mechanical and geometrical parameters and the normalized applied axial load Sdn :  

 

 
                        Ustrengthened sections                                             FRP-strengthened sections 
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(2.9)    

The values of the parameters in the equation (2.9) have been obtained through the least–squares method for 

different kind of rectangular cross sections (obtained by varying the basic parameters); these values are shown in 

Table 2.3. and Table 2.4. 

 

Table 2.3.Parameters for calculation of u exponent for unstrengthened sections 

Sdn  c    
sx  sy    

> 0 1.3 0.01 0.004 0.07 0.2 

= 0 0.95 0.03 0.03 0.2  

< 0 0.73 0.05 0.0015 0.17 -0.055 

 

Table 2.4. Parameters for calculation of u exponent for FRP-strengthened sections 

Sdn  
c  

 sx  sy
 fx  fy    

> 0 1.16 -0.004 0.01 0.04 0 -0.025 0.18 

 

2.3. Closed-form equations for uniaxial bending capacities of sections with double symmetric steel 

reinforcement 

 

For application of equation (2.1) the uniaxial resisting moments must be evaluated beforehand. To this aim the 

translational equilibrium equation must be iteratively solved to find the neutral axis depth under the acting axial 

load Sdn . In order to avoid the iterative solution, the neutral axis depth can be expressed as a function of the 

acting axial load by simplified closed form equations. According to the notations of Fig.2, a simplified model 

with an equivalent area of reinforcing steel uniformly distributed around the section‟s side is used; by this way 

the equilibrium equations, for a section with two-way steel reinforcement and FRP sheets around each sides, can 

be written in a non dimensional form as follows: 
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 (2.12)    

In the previous equations the non dimensional parameters   define the depth of the equivalent stress blocks 

normalized with respect to the section height h ; the subscript identifies the material ( c  for concrete, s  for 

steel and f  for FRP), the superscript identifies the compression or the tension, while the symbols   and ||  

define the direction with respect to the neutral axis. The symbols 
 
identify the equivalent stress blocks, while 

k
 

are for the relevant resultants depths. The symbol   indicates the cover ratio evaluated orthogonally to the 

neutral axis. The parameters s II  and s  ,
 f II  and f 

 

represent the mechanical ratios of parallel and 

orthogonal steel and FRP reinforcement, respectively, where sA II  and sA  , fA II  and fA  are their areas. 
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
Fig. 2. Non-dimensional quantities depicting the geometry and the strain and stress state (in concrete, steel and 

FRP) of a RC section with two-way steel reinforcement. 

 

The coefficients in the equilibrium equations (2.11) and (2.12) have been calculated for the different modes by 

which sectional failure can occur (their values/expressions are given in Table 2.5, Table 2.6 and Table 2.7) 

defining, for each mode, a simplified expression to evaluate the non–dimensional neutral axis depth c . Three 

different sectional failure modes can be defined:  

 c cu   and t u       (mode 1); 

 c cu   and u t yd     (mode2); 

 c cu   and 0yd s    (mode3). 

where t  is the strain at the extreme tensile fiber and u  is the ultimate tensile strain ( u su  , for   

unstrengthened sections and u fd   for FRP- strengthened sections). Mode 1 can be subdivided into two 

sub–modes: mode 1a and mode 1b, which differ in the compression steel state, either elastic or yielded; mode 3 is 

only for unstrengthened sections, because of FRP-strengthening is effectiveness only for yielded sections. 

 

Table 2.5. Values and expressions of the coefficients in equations (2.11) and (2.12) for different failure modes 
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Table 2.6. Values and expressions of the coefficients in equations (2.11) and (2.12) for different failure modes 
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Table 2.7. Values and expressions of the coefficients for FRP-strengthening in equations (2.11) and (2.12) for 

different failure modes 

Failure 

Mode IIf


 f



 f



 fk  

1a 
1  

1 c 

0.5  
1

3  

1b 

2 
 1 ccu

fd c



 
 

 1
0.5

ccu

fd c



 
 

 

The equations of the neutral axis depth are given for different failure modes in Table 2.8; in failure mode 1a, 2 

and 3 they are get by applying the secant method. The parameter A  is given by the following expression: 

 

 
 

 

 

 

   

2 3 2 3

2 3
2 3 2 3

2 3 1 2

1 1
1 1 1

0 95

ydcu
f f

fd fd

b

( ) ( )
( )

.
A

( )

 
  

   

 

 

 
 

 

    
      

   
   

 


II

 (2.13)   

Table 2.8. Values/expressions of non-dimensional neutral axis depth c  for different failure modes. 

Failure mode c  

1a 

 1 1

2

1 2

4
0 8

1 2

s
sd f f s

s s
f

a b

n

.


  



 


 









 

 
    

 

 
   

 

II II

II

 

1b 

2

1 2

4
0 8

1 2

s
sd f f

s
f

n

.


 


















  


 

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2 

2

2

1 2

4
0 8

1 2

s
sd f f

s
f

n A

. A


  


















   


  

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3 

 

 

1
1 2

2
0 8 1 5 0 5

1 2 1

s cu
Sd s
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yd cu yds
s

cu yd

n

. . .

 
 

 

  


   








 

  


 
      
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To define the relevant failure mode of the section the normalized acting axial load Sdn  must be compared with 

the values, in ,
 
at the failure modes boundaries, that can be evaluated by using the expressions given in Table 

2.10, with the values of the neutral axis depth given in Table 2.10. Once the relevant failure mode of the section 

has been defined and the neutral axis depth c  has been evaluated, the normalized resisting moment  0 Sdm n  

can be evaluated using equation (2.12) with coefficients given in Table 2.5.  

 

Table 2.9. Values and expressions of non–dimensional neutral axis depth for different failure mode boundaries. 

Failure mode 

boundaries 
0−1a 1a−1b 1−2 2−3 3−4 

c   
yd u

yd u

d  

 

 


 

cu

cu su

d

 



  

 1cu

cu yd





 

 
 

 1 
 0
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Table 2.10. Expressions of non–dimensional axial load for different failure mode boundaries. 
Failure – mode 

boundaries in
 

0 – 1a 
2

1 2

s
s





 






II

 

1a – 1b     1 1 1 1

2
0 8 2 1

1 2
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a b a b. 
 



 
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
 


 

1b – 2     1 2 1 2

2
0 8 2 1

1 2

s
b b. 
 



 



 


 

2 – 3      2 3 2 3

2
0 8 1 5 0 5 0 5 1

1 2

yds
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. . . .
 



  
          


  

 
 

3 – 4    3 4 3 4

2
0 8 1 0 5

1 2

yds
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. .
 



  
          


   

 
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The ultimate curvature, u , can be evaluated as a function of the non-dimensional acting axial load, Sdn . It is 

given by:  

 cm
u

uh





    (2.14)    

where u  is the non dimensional neutral axis depth of the compressed zone at failure and cm  is the strain at 

the extreme compressed fiber. 

 

3. CONCLUSIONS 

 
A method has been proposed that arrives at defining closed-form equations for performing the assessment of 

existing RC columns with two-way steel reinforcement, under combined biaxial bending and axial load, and the 

design of the FRP flexural strengthening. Starting from the load contour method originally proposed by Bresler 

(1960) and from a previous authors work (Monti et. al. 2006), an efficient procedure for estimating the 

strength/deformation section capacity has been developed. In addition, simple closed-form equations for 

computing section uniaxial resisting moments and ultimate curvature has been defined. The results obtained 

testing the approximate approaches on rectangular rc sections with different geometrical and mechanical 

characteristics are compared with that obtained from an exact one, which makes use of the discretization fibre 

method. The curves obtained with the first show very little deviation from the exact ones. The proposed method 

lends itself to a straightforward assessment of rectangular concrete columns: starting from the assigned axial 

load, the failure mode is directly found and the corresponding moment/curvature capacity computed.  
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