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ABSTRACT: 
 
The question of how many modes to include in the dynamic analyses of multiply-supported structures subjected 
to spatially varying ground motions is considered in this paper. The issue is investigated within the framework 
of the Multiple Support Response Spectrum (MSRS) method developed by Der Kiureghian and Neuenhofer 
(1992). The original MSRS rule is extended to approximately account for the contribution of the truncated high-
frequency modes. A bridge structure designed by the California Department of Transportation (Caltrans) is used 
as an example application. The modal contributions to various response quantities are examined in conjunction 
with measures of the participating modal mass and the improvement achieved with the extended MSRS rule. 
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1. INTRODUCTION 
 
Proper seismic design of extended structures, such as bridges, requires accounting for the spatial variability of 
seismic ground motions due to the loss of coherency of seismic waves, the  wave passage effect and the differ-
ence in the local soil conditions. Differential support motions can enhance or decrease the seismic demand de-
pending on the characteristics of the structure and the ground motion field. The MSRS rule, developed by Der 
Kiureghian and Neuenhofer [2], evaluates the structural response in terms of the response spectra of the support 
motions and a coherency function that characterizes the spatial variability of the ground motion random field. 
This method is based on modal analysis and the fundamental principles of random vibrations theory, and ac-
counts for the cross-correlations between the modes of the structure as well as between the support motions. 
 
An important practical problem that has not been properly addressed is the development of a reliable guideline 
to define the number of modes that should be included in the MSRS analysis. The criterion used in conventional 
seismic analysis is based on the percentage of structural mass represented by the modes. However, this measure 
does not account for differential support motions, nor does it account for the effect of closely spaced modes. 
Kahan [4] proposed a measure of the participating modal mass for the limiting case of totally incoherent ground 
motions. The aforementioned measures are examined in this paper considering the model of an existing bridge 
in California. Furthermore, an extended version of the MSRS rule is developed to account for the quasi-static 
contribution of the truncated modes. Numerical investigations show that the extended rule improves the re-
sponse estimate when the contribution of higher modes is significant. 
 
 
2. STRUCUTRAL RESPONSE TO DIFFERENTIAL SUPPORT MOTIONS 
 
Consider a -degree-of-freedom lumped-mass linear structural model subjected to  support motions. Let  
be the -vector of total displacements at the unconstrained degrees of freedom and  be the -vector of pre-
scribed support displacements. The total displacement vector is decomposed into pseudo-static and dynamic 
components, 

N m x
N u m

s d= +x x x . The pseudo-static component, sx , is the response of the system when dynamic effects 
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are neglected and is related to the support displacements through an influence matrix, , i.e. . The th 
column of the influence matrix, denoted kr , represents the displacements at the unconstrained degrees of free-
dom when the th support degree of freedom is statically displaced by a unit amount while other support de-
grees of freedom remain fixed.  

R s =x Ru k

k

 
Let i , iφ ω  and iζ ,  denote, respectively the mode shapes, natural frequencies, and modal damping 
ratios of the fixed-base structure. Assuming classical damping and neglecting the damping forces associated 
with the constrained degrees of freedom, the total displacement vector can be decomposed as 

1, ...,i = N

( ) ( )
m m N

k k i ki ki
k k i

t u t s t
= = =

= + β∑ ∑∑x r φ

β =φ Mr φ Mφ

 

1 1 1

 (1.1)( )

 
where ki i k i i  is the modal participation factor in which  is the  mass matrix associ-
ated with the unconstrained degrees of freedom, and 

T T/ M N N×
( )kis t  is the i th normalized modal response to base 

motion  obtained as the solution to ( )ku t
 

22 (ki i i ki i ki k )s s s uζ ω ω+ + = − t

a p= +q r

 (1.2)
 
A generic response quantity of interest, , such as a nodal displacement or an internal force component, can 
be written as a linear combination of the displacements at the unconstrained degrees of freedom and the support 
displacements, i.e. . Equivalently, one can write  

( )z t

T T( ) ( ) ( )z t t t= +p u q x
 

1 1 1

( ) ( )
m m N

k k ki ki
k k i

z t a u b s t
= = =

= +∑ ∑∑  (1.3)

 
in which k  and . The coefficients  and  depend only on the properties of the 
structure (not the ground motion).  

T
k k

T
ki i kib = βq φ ka kib

 
 
3. THE MSRS RULE 
 
Using the decomposition of  in Eqn. ( )z t (1.3) and assuming jointly stationary, zero-mean support motions, Der 
Kiureghian and Neuenhofer [2] developed the MSRS (Multiple Support Response Spectrum) combination rule: 
 

max max max
1 1 1 1 1

1 2

1 1 1 1

E[max ] 2 ( )

( ) )

k l k lj

ki lj

m m m m N

k l u u k , l , k lj u s k , l j j
k l k l j

/
m m N N

ki lj s s k i i l j j
k l i j

| z( t )| a a u u a b u D ,

b b D , D ( ,

= = = = =

= = = =

⎡
= ρ + ρ ω ζ⎢
⎣

⎤
+ ρ ω ζ ω ζ ⎥

⎦

∑∑ ∑∑∑

∑∑∑∑
 (1.4)

 
According to the above rule, the mean peak response is given in terms of the structural properties as reflected in 
the coefficients k  and kib , the mean peak ground displacement, maxk , , and the ordinates of the mean displace-
ment response spectrum, 

a u
(k i i )D ,ω ζ , for each support motion, and three types of cross-correlation coefficients: 

The cross-correlation coefficients 
k lu uρ  describe the correlation between the support displacements; they only 

depend on the auto- and cross-power spectral densities (PSDs) of the support motions. The cross-correlation 
coefficients 

ki ljs s  describe correlations between the responses of two modes ( i  and ρ j ) to two support motions 
(  and l ), while the cross-correlation coefficients 

k lju sk ρ  describe correlations between the modal responses and 
the support motions. The latter coefficients are functions of the auto- and cross-PSDs of the support motions as 
well as the modal frequencies and damping ratios. The cross-PSDs of the support motions are given in terms of 
the auto-PSDs and a coherency function that characterizes the spatial variability of the ground motion field. 
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When the support motions are described through response spectra, consistent auto-PSDs  are determined from 
relations given in [2]. Thus, the set of peak ground displacements and response spectra for the support degrees 
of freedom together with a coherency function provide complete specification of the ground motion random 
field for MSRS analysis. 
 
 
4. EXTENDED MSRS RULE ACCOUNTING FOR TRUNCATED HIGH FREQUENCY MODES 

 
For large iω , the last term in the left-hand side of Eqn. 1.2 dominates. Hence, for such cases, an approximation 
of the th normalized modal response to base motion  is i ( )ku t 2( )ki i ks t ω −≈ − u . Using this relation to approxi-
mate the th modal response for , we can write i n i N< ≤
 

1 1 1 1
( ) ( ) ( )

m m n m

k k ki ki k k
k k i k

z t a u b s t d u t
= = = =

≈ + −∑ ∑∑ ∑  (1.5)

 
One can show that the coefficients  only depend on the dynamic properties of the first  modes and can be 
obtained as  

kd n

 
T 1

2
1

n
ki

k k
i i

bd q
ω

−

=

= −∑K Mr  (1.6)

 
where is the stiffness matrix associated with the unconstrained degrees of freedom. Employing the approxi-
mation described in Eqn. 

K
(1.5), the extended MSRS rule that approximately accounts for the contributions of the 

truncated modes is 
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In the above expression, ,maxku  is the mean peak ground acceleration at the th support degree of freedom and 

k lu u , 
k lu uρ  and 

ki k

k
ρ s uρ are three new types of cross-correlation coefficients reflecting, respectively, the correlation 
between the ground accelerations at stations k  and , the correlation between the ground displacement at sta-
tion  and the ground acceleration at station l , and the correlation between the i th modal response at station k  
and the ground acceleration at station . Similar to the original MSRS rule, the cross-correlation coefficients in 
the extended rule are determined in terms of the modal properties of the structure and the ground excitation, the 
latter described in terms of the mean response spectra, the mean peak displacement and acceleration at each 
support degrees of freedom, and the coherency function characterizing the spatial variability. 

l
k

l

 
 
5. MEASURES OF PARTICIPATING MODAL MASS 
 
The measure commonly used in engineering practice to define the number of modes required in the dynamic 
analysis of ordinary structures is  
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1

n
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M
γ

== ∑  (1.8)

 
where i , i

T
i iM = φ Mφ T( ) /i i Mγ = φ M1 , and TM  is the total structural mass associated with the unconstrained 

degrees of freedom. This ratio is a measure of the accuracy in the estimates of base shear forces for the case of 
uniform support motions with only  modes included in the analysis. Kahan [4] developed a measure of the 
accuracy in the base shear forces for the case of totally incoherent ground motions: 

n

 
2

1 1
T

1

n m
i kTI i k

n m
k kk

M
r iβ

= =

=

= ∑ ∑
∑ r Mr

 (1.9)

 
The derivation of this measure is based on the original MSRS formulation, where the cross-modal correlations 
as well as the cross-correlations between the modal responses and support displacements have been neglected.  
 
 
6. APPLICATION TO EXAMPLE BRIDGE 

 
6.1 Description of the structure 
 
As an example application, we consider the model of an existing bridge designed by Caltrans (California De-
partment of Transportation). The elevation, plan and girder cross-section are shown in Figure 1. Each bent con-
sists of a single column with circular cross section of diameter 2.13 mD = . The structure is made of concrete 
with a nominal compressive strength of  for the columns and  for the girder. Moment-curvature 
analysis indicated that the effective flexural stiffness of the columns is 25% of the uncracked flexural stiffness. 
The torsional moment of inertia of the columns is reduced to 20% of its uncracked value . No stiffness reduction 
is required for the prestressed concrete box girder. The columns are considered rigidly connected to the deck at 
the top and fixed at the bottom. The response of the seat abutments at the two ends of the bridge is modeled 
through two translational springs, one longitudinal and one transverse. The stiffness of the longitudinal spring is 
calculated by adjusting the initial embankment fill stiffness proportional to the backwall height. The stiffness of 
the nominal transverse spring is equal to 50% of the transverse stiffness of the adjacent bent. Vertical transla-
tions at the end supports are fully constrained, but free rotations are allowed in all directions. 

25 MPa 28 MPa

 

 
Elevation 

 
Plan View Cross Section of the Girder 

Figure 1 Bridge model (Dimensions are given in meters) 
 
The finite element model of the bridge consists of 3 elements per bent and 6, 8, 8 and 4 elements in the 1st, 2nd, 
3rd and 4th span from the left, respectively. The longitudinal axis of a girder element passes through the centroid 
of the girder. Three vertical rigid frame elements are used for the connection of the upper column elements with 
the girder elements. Condensing out the rotational degrees of freedom, the structure is modeled with 103 trans-
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lational unconstrained degrees of freedom and 15 translational support degrees of freedom. The fundamental 
period of the structure is 2.39 secT = . All modes are assumed to have 5% modal damping. 
 
 
6.2 Representation of the ground motion 

 
The supports are subjected to translational ground motions in the longitudinal, X, transverse, Y and vertical, Z, 
directions (see Figure 1). The ground motions in these directions are considered to be statistically independent. 
The horizontal ground motions at each support are described by the Acceleration Response Spectrum (ARS) 
curves recommended by Caltrans for the corresponding soil types, assuming a peak rock acceleration of 0.3 g 
and a moment magnitude  for the maximum credible earthquake. The vertical ground motion is de-
scribed by the model proposed by Bozorgnia and Campbell [1], which defines the vertical spectral acceleration 
in terms of the horizontal spectral acceleration, the source-to-site distance and the local site conditions. In this 
example we consider the bridge to be located  away from the source. For the spectral values at low fre-
quencies, we assume a spectral shape varying quadratically with frequency. The PSDs of ground accelerations 
that are consistent with the specified ARS are obtained according to the procedure described in [2] for each soil 
type and are shown in Figure 2.  

6.5wM =

20 km
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Figure 2 PSDs of Ground Acceleration for soil types B, C and D 

 
The spatial variability of the ground motion is described by the coherency model developed in [3] 
 

( ) ( ) exp{i[ ( ) ( ) ]}wave passage site response
kl kl kl kl| |γ ω = γ ω θ ω + θ ω  (1.10)

 
in which  describes the incoherence component,   

 is the phase shift due to the wave-passage effect, and  
 is the phase sift due to the site-response effect. In these expressions, 

2( ) exp[ ( ) ]incoherence
kl kl s| | d / vγ ω = − α ω =passagewave

kl )ω(θ
app

L
kl vd /ω− 1tan)ω(θ −=responsesite

kl
)]}ω()ω(Re[/)]ω()ω({Im[ −− lklk hhhh α  

is an incoherence parameter, kl  is the distance between supports  and l , d k sv  is the shear wave velocity of the 
ground medium,  is the projected horizontal distance in the longitudinal direction of wave propagation, app  
is the surface apparent wave velocity, and 

L
kld v

( )sh ω , ,s k l= ,  is the frequency response function for the absolute 
acceleration response of the site associated with the s th support degree of freedom. In the current example we 
use the frequency response function  
 

ωωζi2ωω
ωωζi2ω)ω( 22

2

sss

sss
sh

+−
+

=  (1.11)

 
Table 2 Filter Parameters consistent with Acceleration Response Spectra 

Response spectrum sω (rad/sec) sζ  
Horizontal, soil type B (rock) 6.5 π 0.8 

Horizontal,  soil type C (soft rock) 5.0 π 0.8 
Horizontal,  soil type D (firm soil) 4.5 π 0.8 

Vertical (soil types B, C, D) 13.0 π 0.8 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
which assumes that the soil column behaves as a single-degree-of-freedom oscillator with frequency sω  and 
damping ratio sζ . In the subsequent analysis we use / 1/ 60sv 0α =  and 400 m/sappv = . The values of sω  and 

sζ  consistent with the response spectra in Figure 4 are shown in Table 1. The waves are assumed to propagate 
in the direction of the X axis. 
 
 
6.3 Results 

 
Figure 3 shows the measures of the participating modal mass of the example bridge for the cases of uniform and 
totally incoherent support motions,  and , respectively, as a function of the number of modes considered. 
The figure suggests that the contribution of higher modes is more significant in the case of differential support 
motions. In the subsequent analysis, we assume that including the first 35 modes yields ‘exact’ results. 
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Figure 3 Participating modal mass for uniform and totally incoherent support motions 

 
Figure 4 shows the ratios of the estimates of selected responses when the first  modes are included 
over the corresponding ‘exact’ estimates. The response quantities considered are the displacements, axial and 
shear forces, and torsional and bending moments at the middle of the 1st and 2nd spans. The displacements are 
given with respect to the global X, Y and Z axes, whereas the element forces and moments are given with respect 
to the local axes x, y and z of the girder cross section. Results based on the original MSRS rule as well as the 
extended MSRS rule are presented. 

,1, ... 10n =

 
The results suggest that 2 or 3 modes are sufficient to accurately evaluate the displacement responses. High ac-
curacy for almost all response quantities is achieved when the first 8 modes are considered. The corresponding 
measures of the participating modal mass are 8  and 8 . When fewer modes are included, the 
extended MSRS rule provides an improved approximation in most cases. However, in some cases, it signifi-
cantly overestimates the response when very few modes are included. The peaks in the curves for y  at 

0.80Ur = 0.76TIr =

F 7n =  
are due to the large values of the corresponding  coefficients for the vertical support motions. We note that, 
for each vertical support motion, the coefficients ki  of the closely spaced 7th and 8th modes have values of simi-
lar magnitude and opposite sign. Thus, the inclusion of the 8th mode balances the overestimation by the 7th 
mode. This observation suggests that pairs of closely spaced modes should not be separated in the analysis, es-
pecially when their corresponding coefficients  have opposite signs. 

kib
b

kib
 
The preceding analysis suggests that for structures subjected to non-uniform support motions satisfactory accu-
racy is achieved with a percentage of participating modal mass smaller than that required in the analysis of 
structures subjected to uniform support motions. This is because the response to non-uniform support motion 
includes a significant pseudo-static component, which is not affected by the modal truncation. Therefore, in or-
der to obtain a better understanding of the modal contributions for non-uniform support motions, we need to 
examine the dynamic component of the total response, i.e. consider only the triple and fourfold sums in the 
MSRS formula, Eqn. (1.4). Figure 5 compares the modal contributions in the total response and the dynamic 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
component of the response to non-uniform excitations with the modal contributions in the response to uniform 
excitations. We observe that although differential support motions can increase the contributions of higher 
modes, depending on the response considered, better accuracy may be achieved in the case of non-uniform exci-
tations than in the case of uniform excitations, with the same number of modes included. 
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Figure 4 Response estimates based on the original and extended MSRS rules  
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Figure 5 Comparison of modal contributions for uniform and non-uniform excitations 

 
  
7 CONCLUSIONS 
 
An evaluation of the modal contributions in the response of structures subjected to differential support motions 
is presented. An example application demonstrated that in order to achieve a desired level of accuracy, fewer 
modes are usually required in the case of non-uniform excitations than in the case of uniform excitations. This is 
because non-uniform support motions induce significant ‘pseudo-static’ contribution in the structural response, 
which is not affected by modal truncation. Improved results can be obtained with the extended MSRS rule that 
approximately accounts for the contributions of the truncated modes with small additional computational effort.  
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