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ABSTRACT : 

Post earthquake reconnaissance reports illustrate that failure of reinforced concrete (R.C.) members often involve 
buckling of reinforcement, an observation suggesting that this phenomena is prerequisite for the necessary 
reduction of member length (shortening) that marks failure under transverse cyclic displacement reversals.  From 
previous experimental research it is known that occurrence of buckling is linked to displacement history.  In the 
present paper the problem of bar buckling in the plastic hinge region as a limiting factor of deformation capacity of 
reinforced concrete members is expressed, using as a vehicle the hysteretic stress−strain model of the 
reinforcement, in terms of the imposed displacement amplitude under cyclic reversals.  Through the derived 
analytical expressions it is shown that when controlled by bar buckling, deformation capacity cannot be defined 
uniquely as it varies with the path of applied load.  This explains in part the wide scatter of experimental results 
regarding drift capacity, which is particularly intense in cases where premature modes of failure are suppressed 
and the response is controlled by flexure.  A corollary to this finding, which refers to the established procedures 
of displacement−based design, is that quantifiable indices of deformation capacity, associated with the various 
failure modes, need be expressed as lower bounds, to reflect the wide range of expected values as these might be 
limited by the occurrence of buckling of compression reinforcement under realistic earthquakes.    
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1. INTRODUCTION 
 
A point of contention in modern displacement−based earthquake design or assessment approaches for reinforced 
concrete structures is the ability to obtain dependable estimates of deformation capacity of the individual 
structural members under lateral sway.  Deformation capacity refers to the drift amount (i.e. member rotation 
from its respective chord, which is defined as the relative lateral displacement of the member’s ends, divided by 
the member length), at the point of irrecoverable loss of lateral load resistance.  To this end, a variety of 
experiments have been conducted, primarily on reinforced concrete columns, beams and walls, under 
pseudo−static cyclic displacement reversals simulating earthquake effects.  The international database of tests 
has formed the basis for calibration of empirical, semi−empirical, or even mechanistic models of deformation 
capacity (e.g. Pantazopoulou 2003 and references thereof).  Such are needed as acceptance criteria, i.e., to check 
adequacy of the individual members of the structure against the deformation demands imposed by the design 
earthquake.  There are a number of issues in this approach, as follows: 
 
(a) The database of published tests is marked by excessive scatter indicating that drift capacity depends on a large 
number of different factors not adequately reflected in the design expressions (Pantazopoulou 2003, Syntzirma 
and Pantazopoulou 2002).  The scatter is not eliminated by separation of the tests in groups depending on the 
mode of failure (shear, lap−splice/anchorage, or flexure−shear), or when the sensitivity to relevant design 
parameters such as longitudinal, transverse reinforcement ratio, and axial load ratio is explicitly accounted for, by 
further calibration of the design expressions against groups of tests (Inel et al 2004, Zhu et al 2006).  In general, 
drift capacity is small (ductility in the range of 0.5−2.5) for members underdesigned in shear or with inadequate 
splices/anchorages.  The paradox is that the scatter in dependable ductility is much greater when premature 
failures of this type are unlikely and flexural failure response prevails even after degradation owing to cycling.    
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(b) A significant point of difference between individual investigations contributing to the database lies in the 
displacement history used to simulate the earthquake effect.  It is common to conduct the tests by applying a 
sequence of symmetric displacement cycles so as to induce combined flexure−shear in the tested element.  
Usually either 1, 2 or 3 cycles at each displacement level are applied prior to proceeding to a higher displacement 
magnitude, the increments between levels being expressed in fractions of the yield displacement of the member 
(e.g. a typical history is three cycles at ductility levels of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0).  The number of 
cycles at each level, but most importantly the step used in the incremental sequence, both have a great influence 
in the recorded response.  Note that the step by which lateral displacement is increased from level to level 
quantifies the maximum strain difference inflicted upon a reinforcing bar (i.e. it represents the breadth of a 
hysteresis loop) between extremes of response within a single cycle.  Thus, it quantifies the magnitude of 
residual tensile strain upon unloading from tension, and therefore the amount of drift that need be imposed in the 
reversed direction prior to closure of the cracks crossed by the same bar when in compression.  Considering that 
in simulated earthquake tests buckling of rebars is always sideways, and a determining parameter is the tangent 
stiffness of the bar as it follows its hysteretic stress−strain response, it follows that the displacement step 
increment of the imposed load history affects significantly occurrence of sideways instability.   
 
The uncertainty associated with the displacement history on buckling is even more relevant when considering the 
inherently asymmetric nature of near field earthquake records which are marked by few large pulses rather than 
an incremental symmetric increase of amplitude as would be implied by the simulated pseudo−static tests.   
 
 
2. DEFINITION OF ROTATION CAPACITY AT BAR BUCKLING 
 
To interpret the experimental facts outlined in the preceding, the formal definition of flexural rotation capacity in 
a reinforced concrete member under lateral sway is considered in the remainder of this paper:  drift at failure, θu 
is the least of the values θcc,u, θst,u and θsc,u, which represent the theoretical estimates of member rotation (measured 
with respect to its chord) at concrete compression failure, tension reinforcement rupture, and occurrence of 
theoretical buckling conditions of compression reinforcement.  The basic model in the discussion that follows is 
that of cantilever under a transverse shear force at the tip point, since the statics of this problem are identical to 
those of half the span in a regular frame member under lateral sway (the length of the cantilever model, Ls, is equal 
to half the span of the reference member, whereas all other section properties are identical to those at the end 
supports of the frame element).  In general, the flexural component of drift associated with any particular 
material strain value at the member’s critical section (here for example, compression reinf. buckling), follows the 
familiar procedure of integration of curvatures along the member length:  
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Superscript f marks the flexural origin of the estimated drift components (to distinguish from terms owing to 
reinforcement slippage, shear deformations, etc.), φsc,u is the curvature of the critical cross section upon attainment 
of bar buckling, φy is the yield curvature, and lp is the length of the plastic hinge.  For clockwise positive rotation, 
the curvature terms in Eqn. (2.1) are defined by: 
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where, εsc,u is the critical axial compression strain upon attainment of instability conditions for the longitudinal 
compression reinforcement (compression negative), cu is the depth of the compression zone of the member’s cross 
section at the ultimate (for a constant axial load, cu is very close to the corresponding value cy at tension reinf. 
yielding), d’ is the concrete cover to the centroid of compression reinforcement.  Sign convention in this paper is 
compression negative.  Bar slip from its end anchorage causes a lumped rotation at the face of the support, 
defined here as θ s.  Usually the total drift magnitude is obtained as the sum of the flexural and slip contributions 
without any interaction between the two.  However, the lumped rotation at the support causes a local increase in 
the axial strain of the compression zone, which in turn affects equilibrium of forces in the cross section, and the 
magnitude of curvature, φ.  A general equation relating axial compressive strain at a distance y from the neutral 
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axis of the cross section, εc(y), with slip s of tension reinforcement is (Fig. 1): 
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Here it was assumed that the effect of additional compression strain owing to slip attenuates linearly to a distance 
equal to d from the support of the member (i.e., the denominator d in the s/d component in Eqn. (2.3a)).  The term 
sy/d accounts for the additional axial strain generated in the compression zone of the member as a result of the 
tension bar pullout, sy, at the onset of bar yielding.   The theoretical definition for θsc,u at bar buckling is 
expressed in terms of the critical strain as: 
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where, εcc,u is the concrete strain at the location of the compression reinforcement when the latter reaches its 
critical buckling strain, εsc,u and θ s

sc,u is the drift component owing to pullout of tension reinforcement at the onset 
of bar buckling, i.e.:   
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where, fsu is the ultimate strength of the bar, fsy is the yield stress, Db is the bar diameter, and fb,u is the average bond 
strength that the anchorage may support at attainment of bar strength (here this is assumed to be 80% of the design 
value).  Note that concrete compression strain rather than bar strain was used here to define curvature (to avoid 
the uncertainty in bar strain values which are affected by cycling).  Critical conditions in the reinforcement may 
not be followed by catastrophic buckling if an alternative state of equilibrium can be produced in the cross section, 
resulting from redistribution of the compressive forces from the unstable compression steel to the concrete core.  
This is not possible in lightly confined R.C. members (representative of older detailing practices), in members 
with a prominent flexural action (low axial load), or under reversed cyclic load where cracks remain open.  In 
such cases attainment of the critical compression strain in the longitudinal reinforcement corresponds to buckling 
failure and the theoretical estimate for θsc,u defines the critical rotation capacity of the member.   
 
 
3. CRITICAL BUCKLING STRAIN, εsc,u, UNDER MONOTONIC LOAD 
 
From Eqn. (2.3b) it follows that the true unknown of the problem is the axial strain of compression reinforcement, 
εsc,u, when it reaches critical conditions, as well as its relationship with the compression strain in the concrete at the 
same distance from the neutral axis of the cross section, εcc,u.  The same problem under monotonic (as opposed to 
cyclic) strain conditions is already solved:  a bar segment supported by two successive stirrups (i.e. assuming that 
the unsupported length is equal to the spacing of successive ties Sst), under axial compression will buckle sideways 
at a postyielding stress fs, when (Syntzirma and Pantazopoulou 2006):  

   sysrssyssssbst |,EE;,GPaE;fE.D/S εεεεεε ><=≤<== |  0, if     ||  0, if2007850 ss  (3.1) 

In Eqn. (3.1) Er is the double modulus value which is a weighted average between the tangent stiffness of the bar, 
Et, and the initial elastic modulus Es, to account for the elastic unloading of the tension side of the buckling bar as 
it bends (Papia et al 1988).  (Ratio Er /Es, is plotted against the ratio Et/Es in Fig. 5 in (Pantazopoulou 1998)).  For 
a given value of tie spacing (provided Sst suffices to prevent elastic buckling of the main bars), the dependable 
axial compressive strain at which reinforcement is likely to buckle, εsc,u, is calculated from Eqn. (3.1), and clearly 
depends upon the strain hardening characteristics of compression steel.  The resulting relationship between the 
strain ductility ratio of compression reinforcement, µεsc,u=εsc,u /εsy and the spacing of stirrups normalized with 
respect to the bar diameter Db has the form of an interaction diagram, which is a characteristic of the reinforcement 
uniquely defined by its post−yielding hardening properties (Fig. 2(a)).  The lower right−hand range of the 
diagram is controlled by the characteristics of the stress−strain response of the reinforcement at the onset of strain 
hardening; the above relationships break down if Et=0.  Bar strains within the yield plateau are below the 
interaction diagram and can only be sustained without failure if the member concrete core is sufficiently confined 
(Fig. 2(a)).  Thus, the present analysis is meaningful if the axial strain capacity of the confined core calculated 
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from pertinent confinement models (e.g. Pantazopoulou 2003) exceeds the strain at the onset of strain hardening 
of the reinforcement.  This restriction is consistent with the scope of the study, i.e., member failures dominated 
by flexure. 
 
Under reversed cyclic loading, the actual bar strain follows the hysteretic stress−strain behavior of the 
reinforcement, as required by the imposed displacement history.  To establish a characteristic interaction 
diagram for that problem in a manner analogous to what the monotonic case described above, it is necessary to 
refer to a hysteretic stress−strain model of reinforcement behavior under reversed axial load, and a 
strain–displacement relationship, so that given the displacement history imposed on the member, a strain ductility 
demand may be established for the compression steel. 

 
 
4. HYSTERETIC RESPONSE OF REINFORCING STEEL 
 
A hysteretic relationship enables calculation on the bar axial stress fs, given the axial strain, by systematically 
following through the load history.  Apart from the monotonic envelope in tension and compression, which 
bounds cyclic response, a general expression for the branch curve that describes the path of transition from one 
envelope curve to the other (i.e. from tension to compression and vice−versa) is necessary.  The complete 
hysteretic stress−strain model used in the present study is depicted in Fig. 2(b), 2(c) and is described by the 
following expressions: 
   
(a) Envelope Curve for Response in Tension and Compression:   
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where, fs
env is the envelope stress, εs is the total bar axial strain, fsy and εsy are the characteristic yield stress and 

strain of the reinforcement, εsh is the reinforcement strain at the onset of strain hardening, and fsu and εsu are the 
corresponding values at the point of tensile rupture (Fig. 2(b)).   
 
(b) Branch Curve (Hysteresis Loops):  (modified Menegotto−Pinto model)  The stress is defined as: 
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Terms εs
Q and fs

Q are the strain and stress at the beginning of the branch curve; initial unloading from the 
envelope curve occurs along a line parallel to the elastic response.  The end point of the linear unloading 
segment is the starting point of the branch curve, marked by letter Q in Fig. 2(b).  As observed in steel coupon 
tests under reversed cyclic axial load, a distinct point of yielding occurs only once in the stress−strain response of 
steel.  From that point on, transition from the tension to the compression regime (or vice−versa) follows along a 
branch curve that demonstrates a smooth knee at the point of theoretical yielding, tending asymptotically to the 
envelope curve with a slope Et =b⋅Es. 
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         Figure 1 Additional Compressive Strain caused by Bar Pullout in the Tension Zone   
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In the present model, R is the radius of curvature of the branch curve at the point of theoretical yielding (marked 
by P in Fig. 2(b)), whereas εs

P and fs
P are the coordinates of that point in the stress−strain diagram (thus, in the 

model, theoretical yielding is defined along the linear elastic unloading curve, measured with reference to point 
Q).  The tangent stiffness of the bar along the branch curve is given by: 
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The physical significance of all variables is illustrated in Fig. 2(b).  Of those, coordinates of point Q and 
appropriate values for R and b have been obtained from calibration of the model with experimental results.  For 
a given bar strain history, the complete stress−strain relation of a reinforcing bar is reproduced with the model 
using the following rules: (1) Linear stress−strain response up to first yielding in either direction.  (2) Linear 
strain−hardening after yielding, up to strain reversal, which begins at a strain magnitude of εs=εsr

env, and a 
corresponding envelope stress, fsr

env.  A yield plateau only occurs once, in the first cycle; for the remainder of the 
loading cycles the envelope curve becomes bilinear.  (3) Unloading from the envelope curve follows a linear line 
with a slope of Es, down to point Q, i.e., to a strain of εs

Q = εsr
env–εsy, and a corresponding stress fs

Q = fsr
env–fsy.  (4) 

Thereafter, the unloading curve displays a nonlinear hysteretic behavior that is described by Eqns. 4.2.  (5) 
Identical procedure is followed when steel reverses from compression into tension.  For these cases the 
milestone points for definition of the branch curve are Q’ (εs

Q’, fs
Q’) and P’ (εs

P’, fs
P’) as shown in Fig. 2(b). 

 
To also account for degradation of the hysteretic properties with increasing applied bar strain, εsr

env, R and b are 
taken to decay from the original values, Ro=1.6 and bo (as per Eqn. (4.3)) according with: 
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5. INTERACTION DIAGRAM FOR BAR BUCKLING UNDER CYCLIC LOAD  
 
The basic buckling Eqn. (3.1) was derived from equilibrium and is generally valid.  To formulate an interaction 
chart for cyclic strain history, which would relate the Sst/Db ratio with the dependable compression strain ductility 
prior to attainment of instability conditions of the compression reinforcement Eqn. (3.1) is used.  Here note the 
difference in the meaning of the critical compression strain under monotonic and cyclic conditions:  in the 
monotonic case, the compression strain εsc,u is the actual strain value measured with reference to the zero point in 
the stress−strain diagram of the reinforcement.  In the reversed cyclic stress−strain curve of the bar, the critical 
compression strain is measured with reference to the point of zero stress at any hysteretic branch curve unloading 
from tension into compression.  This strain, denoted as εsc,u

eff, is referred to as effective strain to distinguish from 
the actual bar strain which under certain loading conditions may be tensile (Fig. 2(c)).   
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Figure 2 (a) Buckling Interaction Diagram showing Critical Strain versus Sst /Db;  (b) Basic Model for the 
Hyst. Stress−Strain Law of Rebar;  (c) Definition of Actual Strain εsc, and Effective Strain εsc

eff 
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Clearly, with reference to the hysteretic model it follows that conditions for bar buckling may occur in many 
different ways depending on the overall circumstances of the compression zone of the member and the imposed 
reinforcement strain history.  Generally owing to the poor tensile behavior of concrete, strains sustained by the 
reinforcement in tension exceed the compression strains sustained by the same bars upon load reversal.  Thus, 
the bars are more likely to first yield in tension thereby developing high residual tensile strains.  Whether cracks 
remain open or are closed upon reversal of the load depends on the amount of maximum tensile strain, εsr 

env, 
sustained by the bar prior to unloading from the tension into the compression regime during the previous 
excursion (Fig. 2(c)).  
 
Figure 3a plots the result of Eqn. (3.1) for a compressed reinforcing bar having the following stress−strain 
characteristics: 400 MPa yield strength (εsy= 0.002), a yield plateau extending to a strain of εsh= 0.005, and an 
ultimate strength of 600 MPa attained at a strain of εsu= 0.05.  Results are obtained for different values of the 
unloading tension strain εsr

env (in the plot, εsr
env is taken equal to 0.003; 0.006; 0.010; 0.020; 0.030; 0.040 and 

0.050); the y axis plots the effective bar strain at critical conditions, εsc,u
eff, normalized with respect to the nominal 

yield strain value, εsy; thus, it represents a strain ductility measure for the bar in compression.  Note that the 
effective strain is measured with reference to the point of intersection of the unloading branch with the strain axis 
(Fig. 2(c)); thus through this calculation an interaction diagram is obtained, relating effective strain ductility with 
the Sst/Db ratio at critical conditions.  Since it mainly depends on the strain−hardening properties, this plot is in 
principle identical to that of monotonic behavior, after modifications to account for the reduced b value according 
to Eqn. (4.5).  Thus, for each value of tension strain where unloading starts (εsr 

env), the resulting interaction 
curve is mildly modified from the previous one, owing to the influence of εsr 

env on R and b.  

 
The actual bar strain, εsc,u, at attainment of critical conditions, is related to its effective strain counterpart, εsc,u

eff, 
through the following relationship (Fig. 2(c)), where, εsr

env >0 and the bar is unloaded from the tension envelope: 

                                   eff
u,sc

o
sy

env
sr

eff
u,sc

res
su,sc εεεεεε −−=−=   (5.1a) 

In strain ductility terms, Eqn. (5.1a) is expressed as follows: 
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In Eqn. (5.1b) z is an arithmetic constant ranging between 1.0 and 2.3, for a compressed reinforcing bar having 
the stress−strain characteristics considered in the preceding.  Term εs

res = ε sr
env

 − εsy
o represents the strain 

coordinate at the point of intersection of the branch curve with the strain axis, i.e., it is actually the residual tensile 
strain of the bar upon unloading from the tension envelope (Fig. 2(c)).  In absolute value parameter εsy

o is larger 
than εsy, the difference increasing with the magnitude of ε sr

env.  In deriving Eqn. (5.1b) the two quantities were 
related through the following expression which was obtained by fitting the exact values: 
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Thus, the critical buckling strain of the compression reinforcement not only depends on the constitutive 
properties of its branch and envelope curves (as reflected by the effective critical buckling strain), but it also 
depends on the magnitude of tensile strain sustained by the bar in its previous excursion into tension.  This point 
conclusively demonstrates that conditions for bar buckling in R.C. members undergoing cyclic flexure/shear 
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Figure 3 (a) Interaction Diagram for µεsc,u
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reversals is not unique but rather, it is a function of the loading history.  Dependence on displacement history is 
also valid when considering the corresponding drift or displacement ductility values associated with the onset of 
buckling.  This result is plotted in Fig. 3(b) in the form of interaction diagrams between the true compression 
strain ductility of the reinforcement and the Sst /Db ratio for several different levels of maximum attained tensile 
strain, εsr 

env.  Curves are very similar in shape, but are shifted in the strain ductility axis by an amount ∆µε, 
which is equal to the normalized residual tensile strain magnitude, (εs

res/εsy).  Note that the actual strain at critical 
(buckling) conditions is tensile except for very low magnitudes of sustained εsr

env values (Fig. 3(b)).  Thus, under 
reversed cyclic loading, compression bar buckling will generally occur with the bar carrying a compressive stress 
while being deformed by a significant amount of residual tensile axial strain.   This residual bar strain at 
attainment of buckling conditions is higher (i.e. more tensile) the greater the value of maximum sustained tensile 
strain in the previous cycles.   
 
Figure 4(a) plots for different Sst /Db ratios the estimated strain at critical conditions, εsc,u, against the peak strain 
attained on the tensile envelope during the previous cycle εsr

env.  Both variables are normalized with respect to 
the yield strain of the reinforcement, so that they actually represent strain ductility measures.  The relationship is 
almost linear in the range of small εsr

env values, becoming mildly nonlinear for higher strains.  Note the effect of 
the Sst /Db ratio on this relationship: for values greater than 5.5 (which is the range of practical interest) the critical 
buckling strain becomes increasingly tensile for any given level of εsr

env as the stirrup to bar diameter ratio 
increases, whereas the reverse effect is observed on the effective strain (Fig. 4(b)).  Thus, larger stirrup spacing 
leads to a larger value of actual tensile strain upon bar buckling.  The effect of the loading history is highlighted 
by each curve, which may be considered a bound for the onset of instability:  higher tensile strains attained by 
the reinforcement in the previous cycle cause buckling to occur at larger residual tensile strains upon load 
reversal.  Note that each loading history, usually expressed in terms of displacement reversals, corresponds to a 
specific relationship between strains in the extreme tension and compression layers of reinforcement.   
 
 
6. IMPLEMENTATION WITH EXPERIMENTAL RESULTS  
 
The above procedure is used to interpret available experimental data.  A prismatic cantilever column specimen is 
examined with shear span equal to 900mm, a cross section of 200mm square, reinforced with 4 corner 12mm 
diameter bars (fsy=500MPa, fsu=700MPa, fc

’=20 MPa), having 6mm diameter perimeter stirrups (fy,st=220 MPa) 
spaced at 6Db (Specimen 7b in Syntzirma et al 2006).  The column was tested under constant axial load (8% 
fc

’Ag) and a reversed cyclic lateral force applied at the tip through displacement control following a symmetric 
displacement history of increasing amplitude (Fig. 5(a)).  The plot in Fig. 5(b) depicts strains in the top and 
bottom reinforcing layers as a function of imposed displacement ductility, as well as the peak points on the 
response load−drift curve (Fig. 5(a)).  Also marked on the plots is the point of buckling failure.  Evidently the 
nominal strains in both layers become increasingly tensile as the displacement amplitude is increased, but 
buckling will only take place when the strain history produces a lower magnitude strain in the compressed layer 
than the εsc,u value associated with the peak tensile strain attained in the previous step.  Thus, at each loading 
cycle, which strains the reinforcement from an extreme tension strain of εsr

env, to an extreme strain of εsc upon 
displacement reversal, there are two possibilities regarding failure by bar instability (Fig. 5(c)): 
 
(1) either εsc>εsc,u (algebraically greater) and therefore, buckling will not occur during this displacement cycle 
(2) εsc ≤ εsc,u, thus buckling will occur prior to attainment of the targeted strain magnitude, εsc. 
 
 
CONCLUSIONS  
 
The drift capacity of flexural members is affected by the applied cyclic drift history, and it may be limited by 
sideways buckling of compression reinforcement in the plastic hinge regions.  Upon cyclic strain reversals, the 
critical interaction diagram between strain ductility and the Sst /Db ratio is mildly reduced due to stiffness 
degradation of the hysteretic loops, therefore and the value of εsc,u

eff.  The most dramatic influence is, however, 
the increase in residual strain owing to the pattern of displacement history cycles, leading to the conclusion that in 
members where bar buckling failure is a possible response mechanism (i.e. flexurally−dominant members), no 
dependable unique value of deformation capacity can be relied upon in either design or assessment, other than 
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lower bound estimates of this variable. 
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Figure 5   Response of a Prismatic Cantilever Column. (a) Load vs. Drift, (b) Strains in Top and Bottom Steel 
Layers. (c) Critical Strain εsc,u associated with Peak Tensile Strain attained in the Previous Step εsr

env 
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Figure 4   Example Case. Column with fsy =400MPa, fsu =600MPa (εsu=0.05). Plot (c) results when  the 
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