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ABSTRACT :

Post earthquake reconnaissance reports illustrate that failure of reinforced concrete (R.C.) members often involve
buckling of reinforcement, an observation suggesting that this phenomena is prerequisite for the necessary
reduction of member length (shortening) that marks failure under transverse cyclic displacement reversals.  From
previous experimental research it is known that occurrence of buckling is linked to displacement history. Inthe
present paper the problem of bar buckling in the plastic hinge region asalimiting factor of deformation capacity of
reinforced concrete members is expressed, using as a vehicle the hysteretic stress—strain model of the
reinforcement, in terms of the imposed displacement amplitude under cyclic reversals. Through the derived
analytical expressions it is shown that when controlled by bar buckling, deformation capacity cannot be defined
uniquely as it varies with the path of applied load. This explainsin part the wide scatter of experimental results
regarding drift capacity, which is particularly intense in cases where premature modes of failure are suppressed
and the response is controlled by flexure. A corollary to this finding, which refersto the established procedures
of displacement—based design, is that quantifiable indices of deformation capacity, associated with the various
failure modes, need be expressed as lower bounds, to reflect the wide range of expected values as these might be
limited by the occurrence of buckling of compression reinforcement under realistic earthquakes.
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1. INTRODUCTION

A point of contention in modern displacement—based earthquake design or assessment approaches for reinforced
concrete structures is the ability to obtain dependable estimates of deformation capacity of the individual
structural members under lateral sway. Deformation capacity refers to the drift amount (i.e. member rotation
from its respective chord, which is defined as the relative lateral displacement of the member’s ends, divided by
the member length), at the point of irrecoverable loss of lateral load resistance. To this end, a variety of
experiments have been conducted, primarily on reinforced concrete columns, beams and walls, under
pseudo—static cyclic displacement reversals simulating earthquake effects. The international database of tests
has formed the basis for calibration of empirical, semi—empirical, or even mechanistic models of deformation
capacity (e.g. Pantazopoulou 2003 and references thereof).  Such are needed as acceptance criteria, i.e., to check
adequacy of the individual members of the structure against the deformation demands imposed by the design
earthquake. There areanumber of issuesin this approach, asfollows:

(a) The database of published testsis marked by excessive scatter indicating that drift capacity depends on alarge
number of different factors not adequately reflected in the design expressions (Pantazopoulou 2003, Syntzirma
and Pantazopoulou 2002). The scatter is not eliminated by separation of the tests in groups depending on the
mode of failure (shear, lap—splicelanchorage, or flexure-shear), or when the sensitivity to relevant design
parameters such aslongitudinal, transverse reinforcement ratio, and axial load ratio is explicitly accounted for, by
further calibration of the design expressions against groups of tests (Inel et a 2004, Zhu et a 2006). In generdl,
drift capacity is small (ductility in the range of 0.5-2.5) for members underdesigned in shear or with inadequate
splices/anchorages. The paradox is that the scatter in dependable ductility is much greater when premature
failures of thistype are unlikely and flexural failure response prevails even after degradation owing to cycling.
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(b) A significant point of difference between individual investigations contributing to the database lies in the
displacement history used to simulate the earthquake effect. It is common to conduct the tests by applying a
sequence of symmetric displacement cycles so as to induce combined flexure—shear in the tested element.
Usually ether 1, 2 or 3 cycles at each displacement level are applied prior to proceeding to a higher displacement
magnitude, the increments between levels being expressed in fractions of the yield displacement of the member
(eg. atypical history is three cycles at ductility levels of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0). The number of
cycles at each level, but most importantly the step used in the incremental sequence, both have a great influence
in the recorded response. Note that the step by which lateral displacement is increased from level to level
quantifies the maximum strain difference inflicted upon a reinforcing bar (i.e. it represents the breadth of a
hysteresis loop) between extremes of response within a single cycle. Thus, it quantifies the magnitude of
residual tensile strain upon unloading from tension, and therefore the amount of drift that need be imposed in the
reversed direction prior to closure of the cracks crossed by the same bar when in compression.  Considering that
in simulated earthquake tests buckling of rebars is always sideways, and a determining parameter is the tangent
stiffness of the bar as it follows its hysteretic stress—strain response, it follows that the displacement step
increment of the imposed load history affects significantly occurrence of sideways instability.

The uncertainty associated with the displacement history on buckling is even more relevant when considering the
inherently asymmetric nature of near field earthquake records which are marked by few large pulses rather than
an incremental symmetric increase of amplitude as would be implied by the simulated pseudo—static tests.

2. DEFINITION OF ROTATION CAPACITY AT BAR BUCKLING

To interpret the experimental facts outlined in the preceding, the formal definition of flexural rotation capacity in
areinforced concrete member under lateral sway is considered in the remainder of this paper: drift at failure, g,
istheleast of thevalues gy, 0.0 @nd g, Which represent the theoretical estimates of member rotation (measured
with respect to its chord) at concrete compression failure, tension reinforcement rupture, and occurrence of
theoretical buckling conditions of compression reinforcement. The basic model in the discussion that follows is
that of cantilever under a transverse shear force at the tip point, since the statics of this problem are identical to
those of half the span in aregular frame member under lateral sway (the length of the cantilever modd, L, isequal
to half the span of the reference member, whereas all other section properties are identical to those at the end
supports of the frame dement). In general, the flexural component of drift associated with any particular
material strain value at the member’s critical section (herefor example, compression reinf. buckling), follows the
familiar procedure of integration of curvatures along the member length:

1
qf :qg -'-qyf :fsc,u xlp+§fy)(|—s_ Ip) (21)

Superscript f marks the flexural origin of the estimated drift components (to distinguish from terms owing to
reinforcement slippage, shear deformations, €tc.), f <, isthe curvature of the critical cross section upon attainment

of bar buckling, f ,istheyield curvature, and I, isthelength of theplastic hinge. For clockwise positiverotation,
the curvature terms in Eqn. (2.1) are defined by:
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where, e, is the critical axial compression strain upon attainment of instability conditions for the longitudinal
compression reinforcement (compression negative), ¢, is the depth of the compression zone of the member’ s cross
section at the ultimate (for a constant axial load, ¢, is very close to the corresponding value c, at tension reinf.
yielding), d' isthe concrete cover to the centroid of compression reinforcement.  Sigh convention in this paper is
compression negative. Bar dip from its end anchorage causes a lumped rotation at the face of the support,
defined hereasq ®.  Usually thetotal drift magnitude is obtained as the sum of the flexural and dlip contributions
without any interaction between thetwo. However, the lumped rotation at the support causes alocal increasein
the axial strain of the compression zone, which in turn affects equilibrium of forces in the cross section, and the
magnitude of curvature, f. A general equation relating axial compressive strain at a distance y from the neutral
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axis of the cross section, e(y), with dlip s of tension reinforcement is (Fig. 1):
e(y)=-8, + 3% Y (2.38)
e dog d-c

Here it was assumed that the effect of additional compression strain owing to slip attenuates linearly to a distance
equal to d from the support of the member (i.e., the denominator d in thes/d component in Egn. (2.3a)). Theterm
s,/d accounts for the additional axial strain generated in the compression zone of the member as a result of the
tension bar pullout, s, at the onset of bar yidding. The theoretical definition for g« at bar buckling is
expressed in terms of the critical strain as:

f s &eocu O 1 s
Ocu Oy tlscu =+ — :Xl p+_fy>(|-s' Ip)+qscu (23b)
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where, e, is the concrete strain at the location of the compression reinforcement when the latter reaches its
critical buckling strain, ex, and q °, isthe drift component owing to pullout of tension reinforcement at the onset
of bar buckling, i.e.:

; where, s, =s, +(e, -¢€ )QxD—b (2.30)
d-c, R A A '

where, fg, istheultimate strength of the bar, f, istheyield stress, Dy, is the bar diameter, and f,,, is the average bond
strength that the anchorage may support at attainment of bar strength (herethisisassumed to be 80% of the design
value). Note that concrete compression strain rather than bar strain was used here to define curvature (to avoid
the uncertainty in bar strain values which are affected by cycling). Critical conditions in the reinforcement may
not befollowed by catastrophic buckling if an alternative state of equilibrium can be produced in the cross section,
resulting from redistribution of the compressive forces from the unstable compression stedl to the concrete core.
Thisis not possible in lightly confined R.C. members (representative of older detailing practices), in members
with a prominent flexural action (low axial load), or under reversed cyclic load where cracks remain open. In
such cases attainment of the critical compression strain in the longitudinal reinforcement corresponds to buckling
failure and the theoretical estimate for g, defines the critical rotation capacity of the member.

SU

-
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3. CRITICAL BUCKLING STRAIN, ey, UNDER MONOTONIC LOAD

From Egn. (2.3b) it follows that the true unknown of the problemis the axial strain of compression reinforcement,
exu, Whenit reaches critical conditions, aswel asitsre ationship with the compression strain in the concrete at the
same distance from the neutral axis of the cross section, .. The same problem under monotonic (as opposed to
cyclic) strain conditionsis already solved: abar segment supported by two successive stirrups (i.e. assuming that
the unsupported length is equal to the spacing of successiveties Sy), under axial compression will buckle sideways
at a postyielding stress fs, when (Syntzirma and Pantazopoulou 2006):

S¢ /D, =0.785E,/f, ; E,=200GPa, if e,<0, |e,|fe,; E,=E,, ife <0, |e;[>e, (3.1)

In Egn. (3.1) E isthe double modulus value which is aweighted average between the tangent stiffness of the bar,
E;, and the initial elastic modulus Es, to account for the elastic unloading of the tension side of the buckling bar as
it bends (Papiaet al 1988). (Ratio E,/Es, isplotted against theratio E/Esin Fig. 5 in (Pantazopoulou 1998)). For
agiven value of tie spacing (provided Sy suffices to prevent elastic buckling of the main bars), the dependable
axial compressive strain at which reinforcement islikely to buckle, ey, is calculated from Egn. (3.1), and clearly
depends upon the strain hardening characteristics of compression steel. The resulting relationship between the
strain ductility ratio of compression reinforcement, mes,=ex /€y and the spacing of stirrups normalized with
respect to the bar diameter Dy, hastheform of an interaction diagram, which isacharacteristic of the reinforcement
uniquely defined by its post—yielding hardening properties (Fig. 2(a)). The lower right—hand range of the
diagram s controlled by the characteristics of the stress—strain response of the reinforcement at the onset of strain
hardening; the above relationships break down if E=0. Bar strains within the yield plateau are below the
interaction diagram and can only be sustained without failure if the member concrete coreis sufficiently confined
(Fig. 2(a)). Thus, the present analysis is meaningful if the axial strain capacity of the confined core calculated
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from pertinent confinement models (e.g. Pantazopoulou 2003) exceeds the strain at the onset of strain hardening
of thereinforcement. This restriction is consistent with the scope of the study, i.e., member failures dominated
by flexure.

Under reversed cyclic loading, the actual bar strain follows the hysteretic stress—strain behavior of the
reinforcement, as required by the imposed displacement history. To establish a characteristic interaction
diagram for that problem in a manner analogous to what the monotonic case described above, it is necessary to
refer to a hysteretic stress—strain model of reinforcement behavior under reversed axial load, and a
strain—displacement relationship, so that given the displacement history imposed on the member, a strain ductility
demand may be established for the compression steel.

d = range of influence of slip s on compression strain &
2

- y
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compression Des= (v) =Sy Y
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Figurel  Additional Compressive Strain caused by Bar Pullout in the Tension Zone

4. HYSTERETIC RESPONSE OF REINFORCING STEEL

A hysteretic relationship enables calculation on the bar axial stress fs, given the axial strain, by systematically
following through the load history. Apart from the monotonic envelope in tension and compression, which
bounds cyclic response, a general expression for the branch curve that describes the path of transition from one
envelope curve to the other (i.e. from tension to compression and vice-versa) is necessary. The complete
hysteretic stress—strain model used in the present study is depicted in Fig. 2(b), 2(c) and is described by the
following expressions:

(a) Envelope Curve for Response in Tension and Compression:

env
fS

=Esxe, foresf£ey, , 7V =1, forey, £e,<ey (4.1a)
fg - f
f V= e -eq)+f, for ey<e fe, (4.1b)
€4 - €y
where, fS" is the envelope stress, e is the total bar axial strain, fs, and ey, are the characteristic yield stress and
strain of the reinforcement, ey, is the reinforcement strain at the onset of strain hardening, and fy, and ey, are the
corresponding values at the point of tensile rupture (Fig. 2(b)).

(b) Branch Curve (Hysteresis Loops): (modified Menegotto-Pinto model) The stressis defined as:

€ l;l s~ eg
fo= £+ 10 (1) - 12) where 11 =& 220 tple, and )=~ (42
h+(e)?)r Y el - e

Terms &2 and f2 are the strain and stress at the beginning of the branch curve; initial unloading from the
envelope curve occurs aong a line paralld to the eastic response. The end point of the linear unloading
segment is the starting point of the branch curve, marked by letter Q in Fig. 2(b). As observed in steel coupon
tests under reversed cyclic axial load, a distinct point of yielding occurs only once in the stress—strain response of
steel. From that point on, transition from the tension to the compression regime (or vice—versa) follows along a
branch curve that demonstrates a smooth knee at the point of theoretical yielding, tending asymptotically to the
envelope curve with a slope E;=b>*E..
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In the present model, R is the radius of curvature of the branch curve at the point of theoretical yielding (marked
by P in Fig. 2(b)), whereas &” and ;" are the coordinates of that point in the stress—strain diagram (thus, in the
model, theoretical yielding is defined along the linear elastic unloading curve, measured with reference to point
Q). Thetangent stiffness of the bar along the branch curveis given by:

u

é
: ) 2 fo - f

Et - g (1 b) — + beES : whee b= MY xi (43)
(EICOL R % Cs &

The physical significance of all variables is illustrated in Fig. 2(b). Of those, coordinates of point Q and
appropriate values for R and b have been abtained from calibration of the model with experimental results. For
a given bar strain history, the complete stress—strain relation of a reinforcing bar is reproduced with the model
using the following rules: (1) Linear stress—strain response up to first yielding in either direction. (2) Linear
strain—hardening after yielding, up to strain reversal, which begins at a strain magnitude of e=e;*", and a
corresponding envelope stress, fs®". A yield plateau only occurs once, in thefirst cycle; for the remainder of the
loading cycles the envel ope curve becomes bilinear.  (3) Unloading from the envel ope curvefollows alinear line
with aslope of E, down to point Q, i.e., to astrain of &2 = ey, and a corresponding stress f2 = f¢*™"fy,.  (4)
Thereafter, the unloading curve displays a nonlinear hysteretic behavior that is described by Egns. 4.2. (5)
Identical procedure is followed when steel reverses from compression into tension. For these cases the
milestone points for definition of the branch curveare Q' (&2, f.2) and P’ (&, f”) as shown in Fig. 2(b).

To also account for degradation of the hysteretic properties with increasing applied bar strain, es®", Rand b are
taken to decay from the original values, R,=1.6 and b, (as per Eqn. (4.3)) according with:

R=R, Xk(e" eg’ - e
Ry (es”) k=1.0;for e £e, and k=1- 05— for e >e (4.4)
env s sh s sh
b=b, x%k(eq €y - €4
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Figure 2 (&) Buckling Interaction Diagram showing Critical Strain versus S4/Dy,; (b) Basic Model for the
Hyst. Stress—Strain Law of Rebar;  (c) Definition of Actual Strain ey, and Effective Strain e™

5. INTERACTION DIAGRAM FOR BAR BUCKLING UNDER CYCLIC LOAD

The basic buckling Egn. (3.1) was derived from equilibrium and is generally valid. To formulate an interaction
chart for cyclic strain history, which would relate the Sy/Dy, ratio with the dependable compression strain ductility
prior to attainment of instability conditions of the compression reinforcement Eqgn. (3.1) isused. Here note the
difference in the meaning of the critical compression strain under monotonic and cyclic conditions: in the
monotonic case, the compression strain ey, isthe actua strain value measured with reference to the zero point in
the stress—strain diagram of the reinforcement. In the reversed cyclic stress—strain curve of the bar, the critical
compression strain is measured with reference to the point of zero stress at any hysteretic branch curve unloading
from tension into compression.  This strain, denoted as ey, is referred to as eff ective strain to distinguish from
the actual bar strain which under certain loading conditions may betensile (Fig. 2(c)).
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Clearly, with reference to the hysteretic model it follows that conditions for bar buckling may occur in many
different ways depending on the overall circumstances of the compression zone of the member and the imposed
reinforcement strain history. Generally owing to the poor tensile behavior of concrete, strains sustained by the
reinforcement in tension exceed the compression strains sustained by the same bars upon load reversal. Thus,
the bars are more likely to first yield in tension thereby developing high residual tensile strains.  Whether cracks
remain open or are closed upon reversal of the load depends on the amount of maximum tensile strain, ey ",
sustained by the bar prior to unloading from the tension into the compression regime during the previous

excursion (Fig. 2(c)).

Figure 3a plots the result of Egn. (3.1) for a compressed reinforcing bar having the following stress—strain
characteristics: 400 MPa yield strength (es~= 0.002), a yield plateau extending to a strain of ey,= 0.005, and an
ultimate strength of 600 MPa attained at a strain of e;,= 0.05. Results are obtained for different values of the
unloading tension strain e5™" (in the plot, es®" is taken equal to 0.003; 0.006; 0.010; 0.020; 0.030; 0.040 and
0.050); they axis plots the effective bar strain at critical conditions, ey, normalized with respect to the nominal
yield strain value, ey; thus, it represents a strain ductility measure for the bar in compression. Note that the
effective strain is measured with reference to the point of intersection of the unloading branch with the strain axis
(Fig. 2(c)); thus through this calculation an interaction diagram is obtained, relating effective strain ductility with
the Sy/Dy, ratio at critical conditions.  Since it mainly depends on the strain—hardening properties, this plot isin
principleidentical to that of monotonic behavior, after modifications to account for the reduced b value according
to Egn. (4.5). Thus, for each value of tension strain where unloading starts (es "), the resulting interaction
curveis mildly modified from the previous one, owing to the influence of ex " on Rand b.

30' rT_eSC'ueff 30— fTBsc,u
20- 15
/Dy,
e," ranges from O'o 30
10 0.003 to 0.050
-154 e, " ranges from
o Sst/ Dy 0.003 to 0.050

0o 10 20 30 30
Figure3 (a) Interaction Diagram for mey,, vs. S¢/Dy; (b) Interaction Diagram for mes, vs. Sy /Dy

The actual bar strain, e, at attainment of critical conditions, is rdlated to its effective strain counterpart, ey,
through the following relationship (Fig. 2(c)), where, ex™" >0 and the bar is unloaded from the tension envel ope:

— Afes eff _ Lenv o eff
ey =€s - gy =€y - €y - Egy (5.1a)
In strain ductility terms, Eqgn. (5.1a) is expressed as follows:
e eenv _ eo _ eeff
n.esc’u — U _ 7S 4 s rre;nv_ rresecff’u -z (51b)
esy esy

In Egn. (5.1b) zis an arithmetic constant ranging between 1.0 and 2.3, for a compressed reinforcing bar having
the stress-strain characteristics considered in the preceding. Terme/®=es™" — ey’ represents the strain
coordinate at the point of intersection of the branch curve with the strain axis, i.e, it isactually theresidual tensile
strain of the bar upon unloading from the tension envelope (Fig. 2(c)). In absolute value parameter e;,° is larger
than ey, the difference increasing with the magnitude of es®™". In deriving Egn. (5.1b) the two quantities were

related through the following expression which was obtained by fitting the exact values:
2=0,0027{me ) - 0,0199 xTe & +1,0792 (5.2)

Thus, the critical buckling strain of the compression reinforcement not only depends on the congtitutive
properties of its branch and envelope curves (as reflected by the effective critical buckling strain), but it also
depends on the magnitude of tensile strain sustained by the bar inits previous excursion into tension.  This point
conclusively demonstrates that conditions for bar buckling in R.C. members undergoing cyclic flexure/shear
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reversals is not unique but rather, it is a function of the loading history. Dependence on displacement history is
also valid when considering the corresponding drift or displacement ductility values associated with the onset of
buckling. This result is plotted in Fig. 3(b) in the form of interaction diagrams between the true compression
strain ductility of the reinforcement and the S;/Dy, ratio for several different levels of maximum attained tensile
strain, ex ®". Curves are very similar in shape, but are shifted in the strain ductility axis by an amount Drre,
which is equal to the normalized residual tensile strain magnitude, (es*/ey). Notethat the actual strain at critical
(buckling) conditionsis tensile except for very low magnitudes of sustained ;™" values (Fig. 3(b)). Thus, under
reversed cyclic loading, compression bar buckling will generally occur with the bar carrying a compressive stress
while being deformed by a significant amount of residual tensile axial strain.  This residual bar strain at
attainment of buckling conditionsis higher (i.e. moretensile) the greater the value of maximum sustained tensile
strain in the previous cycles.

Figure 4(a) plots for different S;/Dj, ratios the estimated strain at critical conditions, ey, against the peak strain
attained on the tensile envelope during the previous cycle ex™". Both variables are normalized with respect to
theyield strain of the reinforcement, so that they actually represent strain ductility measures. Therelationship is
almost linear in the range of small e5®" values, becoming mildly nonlinear for higher strains. Note the effect of
the S4/Dy, ratio on this relationship: for values greater than 5.5 (which is therange of practical interest) the critical
buckling strain becomes increasingly tensile for any given level of es®™" as the stirrup to bar diameter ratio
increases, whereas the reverse effect is observed on the effective strain (Fig. 4(b)). Thus, larger stirrup spacing
leads to a larger value of actual tensile strain upon bar buckling. The effect of the loading history is highlighted
by each curve, which may be considered a bound for the onset of instability: higher tensile strains attained by
the reinforcement in the previous cycle cause buckling to occur at larger residual tensile strains upon load
reversal. Notethat each loading history, usually expressed in terms of displacement reversals, corresponds to a
specific relationship between strains in the extreme tension and compression layers of reinforcement.

6. IMPLEMENTATION WITH EXPERIMENTAL RESULTS

The above procedureis used to interpret available experimental data. A prismatic cantilever column specimenis
examined with shear span equal to 900mm, a cross section of 200mm square, reinforced with 4 corner 12mm
diameter bars (f5=500MPa, fs,=700MPa, f.=20 MPa), having 6mm diameter perimeter stirrups (f,«=220 MPa)
gpaced at 6Dy, (Specimen 7b in Syntzirma et al 2006). The column was tested under constant axial load (8%
f. A;) and a reversed cyclic lateral force applied at the tip through displacement control following a symmetric
displacement history of increasing amplitude (Fig. 5(a)). The plot in Fig. 5(b) depicts strains in the top and
bottom reinforcing layers as a function of imposed displacement ductility, as well as the peak points on the
response load—drift curve (Fig. 5(a)). Also marked on the plotsis the point of buckling failure. Evidently the
nominal strains in both layers become increasingly tensile as the displacement amplitude is increased, but
buckling will only take place when the strain history produces a lower magnitude strain in the compressed layer
than the ey, value associated with the peak tensile strain attained in the previous step. Thus, at each loading
cycle, which strains the reinforcement from an extreme tension strain of e5®", to an extreme strain of ey upon
displacement reversal, there are two possibilities regarding failure by bar instability (Fig. 5(c)):

(1) either ex>ey, (algebraically greater) and therefore, buckling will not occur during this displacement cycle
(2) ex £ exy, thus buckling will occur prior to attainment of the targeted strain magnitude, .

CONCLUSIONS

The drift capacity of flexural members is affected by the applied cyclic drift history, and it may be limited by
sideways buckling of compression reinforcement in the plastic hinge regions. Upon cyclic strain reversals, the
critical interaction diagram between strain ductility and the S /Dy, ratio is mildly reduced due to stiffness
degradation of the hysteretic loops, therefore and the value of e, . The most dramatic influence is, however,
theincreasein residual strain owing to the pattern of displacement history cycles, leading to the conclusion that in
members where bar buckling failure is a possible response mechanism (i.e. flexurally—dominant members), no
dependable unique value of deformation capacity can be relied upon in either design or assessment, other than
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lower bound estimates of this variable.
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Figure5 Response of a Prismatic Cantilever Column. (a) Load vs. Drift, (b) Strains in Top and Bottom Steel
Layers. (c) Critical Strain ey, associated with Peak Tensile Strain attained in the Previous Step es™"



