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ABSTRACT : 

For Beam-column models in the nonlinear analysis of structures concerned with earthquake ground motions, the 

description of nonlinear distribution along the member length and the section behavior under reversal compound 

forces are two important aspects to ensure the reliability of the member model. This paper introduces a new way 

for section description, which is based on the section intrinsic times and could be used for either homogeneous 

members or composite members. According to the irreversible thermodynamics, the establishment of the energy 

conservation equation in the partial length of member and the section constitutive equation with integral style is 

introduced in detail. For the sake of simplicity, a practice model with the synthetic section-time is proposed and 

the incremental equations convenient to numerical methods of member nonlinear analysis are introduced. The 

mathematical equations of the model are uniform for various loading situations, and the computer programming 

work at the section level could be greatly simplified when it is put into use in member nonlinear analysis. The 

method for determining the model parameters is discussed and some improvement suggestions are proposed for 

further researches at the end of the paper. 
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1. INTRODUCTION 

 

Beam-column models are widely used in the nonlinear analysis of structures concerned with earthquake ground 

motions. Considering the phenomenon that plasticity often happens and spreads at member ends, models with 

concentrated plastic-hinges are widely used in the elastic-plastic analysis of R/C frame structures due to the 

convenience in numerical calculation.  

 

The single-component model (Giberson1969) describes the member plasticity through two hinges concentrated 

at member ends. When the plastic-hinge is concerned with the section character under compound forces, the 

model could be used to the biaxial dynamic analysis of frame structures (Nigam 1970; Takezawa and Aoyama 

1976). For the model with finite length hinges, the member is divided into three parts and the plastic length of 

the two end-parts changes with the moment distribution along the member (Meyer, Roufaiel, and Arzoumanidis 

1983; Roufaiel and Meyer 1987). Darvall and Mendis (1985) also defined a softening length at member ends to 

undergo softening analysis for plane frames. With the development of Finite Element Method (FEM), member 

models based on FEM gradually become popular in structure nonlinear analysis. Zeris & Marhin (1988) 

proposed an idea of interpolation of section force in a kind of mixed algorithm. Owing to the continued work 
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(Zeris and Marhin 1991-1; Zeris and Marhin 1991-2; Spacone, Ciampi, Filippou 1996), the flexibility-based 

model has been gradually put into practice in structure dynamic analysis. 

 

For member modeling methods based on section description, the description of section hysteretic behavior is the 

key to ensure the reliability of the model. For R/C plane frames, the relationship between moment and rotation 

at member end is the mainly concerned aspect in early studies. Various multiple-lines-composite models have 

been put forward to describe the strength and rigid features of the section under reversal forces (Clough, 

Benuska, and Wilson 1965; Takeda, Sozen, Nielsen 1970; Roufaiel and Mayer 1987; Park and Ang 1985). 

Improvements of the studies are focused on the description of shear and bond-slip effects that cause the rigid 

deterioration in the aspect of hysteretic characteristics.  

 

As for the section description under compound forces, Nigam (1970) developed a section model based on the 

analogical theory of the plastic mechanics on describing stress-strain constitutive relationship. Further 

researches were made by Takizawa and Aoyama (1976) to take into account the degrading trilinear stiffness 

model in the hardening rules. For reinforced concrete columns, Lai, Will, and Otani (1984) proposed a special 

model with parallel end-springs, and the further developments of the model are focused on less spring number 

and on more rational description for reinforced concrete features (Lai and Will 1986; Saiidi, Ghusn, and Jiang 

1989; Jiang and Saiidi 1990). In the study of member FEM, the fiber-section model was put forward to describe 

the section characteristics under biaxial bending and axial force (Zeris and Marhin 1988 & 1991; Neuenhofer 

and Fillippou 1997; Spacone, Ciampi, Filippou 1996). The compound feature of the section is automatically 

formed by the integral of fiber stress on the cross section. Combined with the flexibility-based iterative method, 

the fiber-section model could rationally control the total hysteretic history of the member without too much 

numerical calculation quantities. 

 

Thus, it could be concluded that if a reasonable section model could be offered, the member model could be 

established by many methods, such as the single component method, the classical FEM method or the 

flexibility-based iterative method. A section model should be convenient to numerical calculations and capable 

of describing the section restoring force character under compound forces correctly. This paper introduces a new 

way for section description, which is based on the idea of section intrinsic variables. The theoretical 

establishment is introduced in detail and some application issues are discussed.  

 

 

2. ENERGY CONSERVATION EQUATION IN PARTIAL ZONE OF MEMBER 

 

Consider the deformation history of a member from the viewpoint of irreversible thermodynamics. Take the 

micro length of member, instead of the micro cube, as the subregion of the member. Correspondingly, member 

deformation and resistance at the section instead of strain and stress are taken as primitive state variables of the 

irreversible system. According to the energy conservation equation of the whole member,  

( ) ( ) ( )
∫∫∫∫∫ +++=++
L
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where L =member length; ρ =mass per unit length; u  = displacement vector of the section centroid; θ  = 

section rotation vector; G  is a 3×3 diagonal matrix with the element being the polar moment of inertia of the 

section and the two moments of inertia along the two principle axes of the section; e =energy per unit length; 

F = section resistance vector with 6 components: axial resistance, two shear resistances along centroidal 
principle axes of the section, moment resistance of torsion, and two moment resistances of bending in centroidal 
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principle planes; v= member deformation vector with 6 components: axial strain, two shear strains along 
centroidal principle axes of the section, torsion curvature, and two bending curvatures in centroidal principle 

planes; and 
( )eq = total heat flux per unit length conducted from circumstance to member. Simplification of 

Eq.2.1 gives: 

( )eT qe &&& += vF  or 
( )eT qddde += vF                          (2.2) 

where “d ” denotes the increment of variables.  

 

     

3. ESTABLISHMENT OF THE SECTION MODEL BASED ON SECTION INTRINSIC TIME 

 

According to the irreversible thermodynamics containing internal variables, select M groups of independent 

internal variables, 1g , 2g ,…, Mg . Each mg (m =1,2,…,M) has 6 components corresponding to the 6 aspects 

of member deformation. From Eq.2.2, the relationship between the state variables and generalized forces could 

be derived by the similar way adopted in the material constitutive study (Valanis 1971). We now just write out 

the results without detailed derivation: 

M21 ,...,, gggv
F

ϑ∂

∂ψ
= ; 

M21 gggv ,...,,∂ϑ

∂ψ
η −= ; 

ϑ
∂

∂ψ

,m

m

v
g

Q −=   (m =1,2,…,M)         (3.1) 

0≥m

T

mgQ &    (m =1,2,…,M)                             (3.2) 

where ( )m,, gv ϑψψ =  = Helmholtz free energy; η  = entropy; mQ (m =1,2,…,M) = M group of generalized 

friction forces corresponding to mg (m =1,2,…,M) ; and ϑ  has the significance of empirical measure of 

temperature. Define 6 section intrinsic times, iz ( i =1,2,…,6), to represent the measurement of irreversible 

extent of each aspect of the member deformations. Assume that each mig ( i =1,2,…,6) is only the function of 

iz  with the same subscript, i . For the situation of small deformation and small change of temperature, assume 

that 

mmm gsQ &=   (m =1,2,…,M)                            (3.3) 

where 
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and ms (m =1,2,…,M) are 6×6 real matrices. Substituting Eq.3.3 in Eq.3.2 gives 

0≥m

T

m

T

m gsg &&   (m =1,2,…,M)                          (3.5) 

This demonstrates that ms (m =1,2,…,M) are positive-definite matrices. 

 

Expand ( )m,, gv ϑψψ  =  according to the Taylor Series at the reference state, ignore the item higher than two 

orders, and suppose that all the variables are relative to the reference state, we obtain 
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where a  is a 6×6, symmetrical, real, and constant matrix; mb (m =1,2,…,M) are 6×6, real and constant 

matrices; mnc ( m , n =1,2,…,M) are 6×6, real and constant matrices with symmetrical nature of 

nmjimnij cc = ( i , j =1,2,…,6); d and me (m =1,2,…,M) are real and constant vectors with 6 components; 0f  is 

a real constant. Making partial derivations of Eq.3.6 and combining Eq.3.1a, Eq.3.1c and Eq.3.3, we obtain that 
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Considering the independence between mg (m =1,2,…,M) for different m , Eq.3.8 can be written as 

0=+++ ϑmmm

T

mmm egCvbgs &   (m =1,2,…,M)                     (3.9) 

where mC (m =1,2,…,M) are 6×6, symmetrical, real, and constant matrices. Considering the positive-definite 

nature ms and the symmetrical nature of mC , there must be an unsingular matrix mP (6×6) (m =1,2,…,M) 

making 

IPsP =mm

T
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where I  = 6×6 unit diagonal matrix; miλ ( i =1,2,…,6) = six real roots of mmm CSλ − . Using Eq.3.10, 

Eq.3.9 could be solved as following explicit expressions: 
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where mmm PbA = (m =1,2,…,M) are 6×6, real, and constant matrices.  

 

For isothermal conditions, Eq.3.12 becomes 

( )( )∑ ∫
=

′′−−=
M z

zvAzzΛAavF
1

0
m

T

mmm d                      (3.13) 

This is the section model based on section intrinsic times, iz ( i =1,2,…,6), which could be used in member 

modeling. The irreversible deformation feature of the section is represented by iz ( i =1,2,…,6), and the 
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nonlinear compound feature between different aspects of the member deformation is represented by the 

non-diagonal elements of mA (m =1,2,…,M). Note that whether the member material is homogenous or not is 

not mentioned during the establishment of Eq.3.13. The section model is applicable to homogeneous members 

or composite members. 

 

 

4. PRACTICAL SECTION MODEL AND MEMBER NUMERICAL CALCULATION 

 

For the sake of simplicity, let zzzz ==== 621 ...  and assume that mijA =0 when ji ≠ , Eq.3.13 is 

simplified as: 

( ) ( )∑∫
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z

i
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mijiji zdzveMvaF iαλ
  ( i =1,2,…,6)                    (4.1) 

z is called the synthetic section-time. In the case of small deformations, define the plastic deformation vector as 
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where ik0  = elastic stiffness of each dimension of the section. Using the similar method taken in the study of 

Enodochronic Theory of Plasticity (Valanis 1980; Wu and Yang 1983), Eq.4.1 could be written as 

( ) ( )∫ ′
′

′−=
z

p

i

ii zd
zd

dv
zzzF

0
µ , ( ) z

i

z
k

i

i
i

ii

i

eke
k

k
z 1

0

1

10

1

ρ

ρ

µ −








−
−

+
−

=  ( i =1,2,…,6)        (4.3) 

where dz  could be defined as: 

( )pppz dv,...,dv,dvgedz 662211 κκκβ−=                          (4.4) 

and ik0 , ik , i0ρ , i1ρ , iκ  ( i =1,2,…,6) and β  are constant parameters of the section model. The 

incremental form of Eq.4.3 is 

( )dzzEdvDdF iiiii ρ+=  ( i =1,2,…,6)                       (4.4a) 
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where iD  ( i =1,2,…,6) is the original stiffness of dimension i  of the section. If it is assumed that dimension 

i  is elastic, ( )dzzE iiρ  in Eq.4.4a is zero and iD is the elastic stiffness of the dimension. For the dimensions 

concerned with plasticity, iD  should be obtained through Eq.4.4c, Eq.4.4d, and Eq.4.4e.  
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Introducing ( ) ( )
∫ ′
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Eq.4.5 could be used to solve Fd  and dz  from known vd  and the nonlinear relationship between F  and 
v  could be obtained. Rewrite Eq.4.4a as 

pddd FvDF +=                                 (4.6) 

where D  is the diagonal matrix with elements being iD  ( i =1,2,…,6) and 
pF  is called the plastic resistance 

vector of the section. Eq.4.5 and Eq.4.6 could be used in the various member models mentioned in the 

introduction and obtain corresponding iterative methods. 

 

 

5. SOME DISCUSSTIONS 

 

Eq.4.5 and Eq.4.6 is the section model based on the synthetic section-time. The mathematic equation is uniform 

for monotonic loading or reversal loading and for one-dimensional deformation or compound forces case. When 

it is applied to member nonlinear analysis, the computer programming work and the numerical calculation 

procedure under the section level could be greatly simplified. Because the section model is based on the 

relationship between section resistance and deformation rather than on the relationship between stress and strain, 

the member model could be used for homogeneous members or composite members.  

 

ki , k i0 , k i1 , ρ 0i , ρ1i , iκ ( i =1,2,…,6) andβ in Eq.4.5 are section parameters. According to the principle that the 

section model should satisfy each of the single deformation condition, ki , k i0 , k i1 , ρ 0i , ρ1i andβ could be 

determined by the real ii vF − relationship under every single deformation condition. For the single deformation 

case of dimension i , only keep the two equations for the dimension in Eq.4.5 and take the last equation as 

p

i

z dvedz β= . It should be noticed that ki , k i0 , k i1 , ρ 0i , ρ1i and β , in the equations are as a whole to 

determine the ii vF −  theoretical curve. Except that k i0  is the elastic stiffness of the dimension, other 

parameters haven’t specific meaning for the ii vF −  curve. The principle for determining them is to ensure the 
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theoretical curve well fitting the real one. An adaptable fitting principle should be taken and corresponding 

computer program method should be used in the work. 

 

When the section is under compound forces, the definition of dz  is very important for the compound force 

description of the section. The definition way of dz  could refer to the function of the real section yielding 

surface. For example, in the case of biaxial bending, dz could be defined as 

( ) ( )222

2

11

ppz dvdvedz κκβ += −
and further analysis is focused on the determination of 1κ  and 2κ . However, 

for the more complex compound cases, same order of  
p

iidvκ  in Eq.4.4 seems to be inadaptable and the 

different units between different deformations should be taken into account in the definition of dz . A 

systematic study is still going on for commonly used members with various shapes and materials.  

 

On the other hand, the function style of the integral kernel in Eq.4.3 is determined by the assumed relationship 

between mQ and mg& . In this paper, Eq.3.3 gives rise to the exponential kernel of Eq.3.13 and makes the hysteric 

curve being diamond style. Different kernel functions should also be attempted for different deformation aspect 

of the member. 

 

 

6. CONCLUSION 

 

A new way for section modeling is proposed in the paper, which is similar to the Endochronic Theory of 

Plasticity. However, there are difference between them. The original equation of the section model has integral 

style and the irreversible features are described by the section intrinsic time. When it is introduced into a 

beam-column model, the computer programming work under the section level could be greatly simplified.  

 

For the endochronic model, the main difficulty in the utilization is the definition of intrinsic time and the 

determination of the model parameters. In order to make the model suitable for complex hysteretic feature, 

multiple section intrinsic times and different kernel functions should be taken into account to improve the 

reliability of the model in engineering practice.  
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