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ABSTRACT: 
 
An Analytical method for calculating dynamic stress intensity factors in the mixed mode (combination of opening 
and sliding modes) using complex functions theory is presented. The basis of the method is grounded on solving the 
two-dimensional wave equations in the frequency domain and complex plane. After solving the wave equations 
(considering appropriate boundary conditions), the stress and strain fields, also the J-integrals are obtained. Finally 
using the J-integrals, dynamic stress intensity factors are calculated. Numerical results including the values of 
dynamic stress intensity factors for a crack in an infinite domain subjected to P and SV waves are presented. 
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1. INTRODUCTION 

 
Stress intensity factor is one of the most important parameters in the fracture mechanics. Calculation of this factor 
in the case of dynamic loading is required for analysis of cracked structures against earthquake. Many researches 
have been done about dynamic problems of cavity and crack. Pao and Mow [1] introduced the problem of 
diffraction of elastic waves and dynamic stress concentrations. Wells and Post [2] calculated dynamic stress 
distribution surrounding a running crack based on a photoelastic analysis. Also the unstable crack propagation was 
studied by Wells [3]. Achenbach [4] showed the effect of dynamic loading on the brittle materials. Freund [5] and 
Sih [6] described the problem of elastodynamics in the media including crack. Chirino and Abascal [7] calculated 
dynamic stress intensity factors based on the boundary elements method. The use of complex functions in 
elastostatic problems was expanded by Muskhelishvili [8]. Kassab and Hsieh [9] solved the static problem of 
doubly connected domain. Pengfei et al. [10] and Kohno and Ishikawa [11] described a method for solving infinite 
plate including cavity using complex functions theory. Verrut [12] calculated the deformation of a tunnel in an 
elastic half plane. Also Liu et al. [13] and Han et al. [14] solved the problem of scattering waves in infinite media 
based on complex variables theory. In addition, Bowie [15] solved the crack problems by mapping technique. In the 
present study an analytical method for solving dynamic problem of crack using complex functions theory is 
introduced. The power of this method lies in the conformal mapping of a complicated shape to a simple geometric 
shape (e.g. unit circle) in the mapped plane. Therefore a large number of unsolved problems or those with very 
complicated geometries can be solved in a very simple manner. Use of complex functions theory in dynamic 
problems of crack is different from elastostatic. In this way, potential functions are applied in two-dimensional 
elastic wave equations. Then these equations are transformed into complex plane. In this domain, solution of the 
resulting partial differential equations (calculation of the potential functions) is found in the series of the Hankel 
functions with unknown coefficients. Applying appropriate boundary conditions of the crack, a set of algebraic 
equations are achieved. Solving these equations, the unknown coefficients and consequently potential functions are 
evaluated. Using the potential functions, all desirable parameters such as stress, strain, displacement and the J-
integrals are calculated. Finally, based on the relation between the J-integrals and stress intensity factors, these 
parameters are calculated. 
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2. GOVERNING EQUATIONS 
 
The two-dimensional elastic wave equations in directions x and y are expressed as: 
 

( )

( )
      

t
v

yx
u

y
vv

t
u

yx
v

x
uu

2

22

2

2
2

2

22

2

2
2

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∂
∂

ρ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
+

∂
∂

µ+λ+∇µ

∂
∂

ρ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
+

∂
∂

µ+λ+∇µ

  2

2

2

2
2

yx ∂
∂

+
∂
∂

=∇                                       (2.1) 

 
In these equations 2∇  is two-dimensional Laplace operator and u, v are the displacements in directions x and y 
respectively. Also  λ , µ  are the Lamé elastic constants and ρ  is the density of medium. The potential functions Φ  
(for P wave) and Ψ  (for SV wave) are defined as below: 
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Therefore Eqn. 2.1 is converted to: 
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In which pC  and sC  are the propagation velocities of compressive and shear waves respectively: 
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3. COMPLEX FUNCTIONS AND CONFORMAL MAPPING 
 
The complex variables ζ , ζ  are introduced as: 
 

iyx +=ζ   iyx −=ζ   θ=ζ ire                                                           (3.1) 
Using the relations below, 
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The Laplace operator in the complex plane is obtained as: 
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In the case of harmonic waves, Φ  and Ψ  are expressed as: 
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where ω  is the frequency of wave functions. Therefore for the harmonic case and in the complex plane, Eqn. 2.3 is 
changed to: 
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In the crack problems involving complicated boundaries, conformal mapping converts these boundaries to the 
simple shape (unit circle). The mapping function is expressed by: 
 

)(w η=ζ                                                                                      (3.7) 
 
Implying the mapping function )(w η , Eqn. 3.6 is written in the mapping plane as below: 
 

( )

( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

ηηψη′η′⎟
⎠
⎞

⎜
⎝
⎛ β

=
η∂η∂
ψ∂

ηηφη′η′⎟
⎠
⎞

⎜
⎝
⎛ α

=
η∂η∂
φ∂

,)(w )(w
2
i

,)(w )(w
2
i

22

22

                                                       (3.8) 

 
The solution of these equations is found as: 
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In the above equations, ( )rH )1(

n χ  is the Hankel function of first kind and order n: 
 

( ) ( ) ( )riYrJrH nn
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n χ+χ=χ                                                                              (3.10) 
 
Where ( )rJn χ  and ( )rYn χ  are the Bessel functions of first and second kind respectively and of order n. This type 
of the Hankel function satisfies the radiation boundary condition. na , nb  are the unknown coefficients calculated 
from boundary conditions of the problem.  

 

4. DISPLACEMENTS AND STRESSES 
 
From Eqn. 2.2 displacement field in the mapping plane (η  planes) is derived as: 
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ρu  and ϕu  are the radial and tangential components of displacement vector respectively. (The second part of Eqn. 

4.1 is the conjugated form of the first one). Using the relations below, 
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Eqn. 4.1 is converted to: 
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 Based on the Hook law, the stress field in the η  plane is evaluated as: 
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ρσ , ϕσ  and ρϕτ  are the radial, hoop and shear components of stress tensor respectively. Subtracting two parts of 

the above relations yields: 
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(Again the second part of Eqn. 4.5 is the conjugated form of the first one). Eqn. 4.5 is written in term of the Hankel 
functions as below: 
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5. BOUNDARY VALUE PROBLEM 

Now consider a crack in an infinite elastic medium subjected to the harmonic incident wave. The length of the crack 
is "2a" and on its surface the stress is vanished. All of the wave variables are the sum of incident and scattering 
components, therefore the potential functions are written as: 
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Superscripts "in" and "sc" are for incident and scattered components respectively. The incident components of stress 
are calculated from incident potential functions based on Eqn. 4.5 Also scattering component of this parameter is 
found from Eqn. 4.6 Finally the boundary value problem is written as below ( 1=ρ ): 
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The incident potential function for P wave is as following: 
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In which γ  is the angle between direction of the incident wave and x-axis. Also 0φ  is a coefficient regarded as 
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unity. This equation in ζ  plane is written as: 
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And finally in mapping plane (η  plane): 
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For the case of SV wave, the incident potential function is written as: 
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( 10 =ψ ). The mapping function for a crack with length "2a" is:  
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This function is the mapping function of an ellipse with semi-major axis "a" and semi-minor axis " 0b = ". 
Multiplying both sides of Eqn. 5.3 by ϕ−ise and integrating from π−  to π , an algebraic equation is derived. Solving 
this equation, unknown coefficients na , nb  are calculated. Knowing these coefficients, the J-integrals and 
consequently dynamic stress intensity factors are calculated. J-integrals are defined as: 
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In these relations U is the density of elastic strain energy. For two-dimensional case U is written as: 
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In which: 
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ν  is the Poisson ratio and xT , yT  are the components of traction vector: 
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yxyxxx nnT τ+σ=     yyxxyy nnT σ+τ=                                                (5.13) 
 

Where xn  and yn  are the components of normal vector of the surface. Also "s" is the path of the integration. Since 
the J-integrals are the path independence, every path surrounds the crack (the unit circle in mapping plane) can be 
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intensity factors are achieved:  
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( )III2 KK
4

1J ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
µ
+κ

−=                                                     (5.15)  

   

6. NUMERICAL RESULTS  
 
Figure 1 represents the crack with length of “2a” in an infinite medium subjected to the harmonic wave. The crack 
surface is free stress and Poisson ratio of medium is considered equal to 0.25. The wave number K is related to 
wave frequency as follows: 
 

aveincident w SV                               K

aveincident w  P                       2λK

2/1

2/1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ
µ

=ω

⎥
⎦

⎤
⎢
⎣

⎡
ρ
µ+

=ω

                                          (6.1) 

 
The wave number, K is equal to α  and β  in the case of P and SV incident waves respectively. Also for a circle with 
a radius “a” the mapping function is defined as: 
 

ϕ=η iae)(w                                          (6.2) 
 
Figure 2 shows the values of dynamic stress intensity factor for the opening mode ( IK ) versus dimensionless wave 

number ( aα ) and various angle of P incident wave. These values were normalized by a2
0 πµβφ . In Figure 3 

these values are given for sliding mode ( IIK ) and P incident wave. Figure 4 represents the values of dynamic stress 
intensity factor for the opening mode ( IK ) versus dimensionless wave number ( aβ ) and various angle of SV 

incident wave. These values were normalized by a2
0 πµβψ . Also Figure 5 is concern to the values of dynamic 

stress intensity factors sliding mode ( IIK ) and SV incident wave. An excellent agreement with the results of Chirino 
and Abascal [7] based on the boundary element method has been observed.  
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Figure 1 Crack in an infinite medium subjected to the harmonic wave 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Values of normalized IK  versus dimensionless wave number for P wave 
      Solid line: present study, point line: Chirino and Abascal [7] 
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Figure 3 Values of normalized IIK  versus dimensionless wave number for P wave 

        Solid line: present study, point line: Chirino and Abascal [7] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 Values of normalized IK  versus dimensionless wave number for SV wave 

          Solid line: present study, point line: Chirino and Abascal [7] 
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Figure 5 Values of normalized IIK  versus dimensionless wave number for SV wave 
         Solid line: present study, point line: Chirino and Abascal [7] 

 
 
7. CONCLUSIONS 
 
In this paper an analytical method for calculating dynamic stress intensity factor in the mixed mode, using 
complex functions theory was presented. This method includes the solution of two-dimensional wave equations 
by means of complex functions theory. The solution is obtained in series of the Hankel functions with unknown 
coefficients, calculated from boundary conditions of the problem. Using this method, every dynamic problem of 
theory of elasticity can be solved by considering conventional mapping functions and applying the appropriate 
boundary conditions. Moreover, it was shown that using conformal mapping technique, significant 
simplification in calculation process is achieved which is mainly due to the fact that the calculations are 
performed on a unit circle in contrast to a crack with complicated geometry. This simplification also includes 
the J-integrals calculation. The well-known problem of an infinite medium containing a crack was solved by this 
method and the values of dynamic stress intensity factors were achieved. This method represents exact solution 
for dynamic problems of the crack in compare with numerical methods (e.g. boundary elements method). Also 
the required computer calculations by this method are significantly lower.  
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