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ABSTRACT : 

Single story structures with different in-plane wall strength and stiffness, rotational inertia, and out-of-plane 
wall stiffness are subjected to impulse ground motions to obtain their dynamic response considering torsion. A 
simple algorithm is developed to model this behaviour. It is shown that the median increase in response of the
critical component considering torsion from earthquake records is similar to that from impulse records. A
simple design methodology is then proposed which enables the likely critical element earthquake response
considering torsion to be obtained from building analyses not considering torsion.  
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1. INTRODUCTION  
 
Torsional response of structures during earthquake shaking is caused by stiffness and strength eccentricities 
relative to the centre of mass or by torsional ground motions. The significant body of research on the 
asymmetric response of these structures has been summarized by Rutenburg (1998), De Stefano and Pintucchi 
(2006) and Au et al. (2008). While much has been done, there is still a need for a simple method to understand 
the total response of general structures which may deform torsionally during earthquake motion. This method 
should consider rotational inertia, out-of-plane walls, and both high and low ductility demands. It should be 
appropriate for structures with both high and low levels of torsional sensitivity, for different assumptions related 
to strength and stiffness dependency, and it should have a strong fundamental (rather than empirical) basis. The 
method should also be able to be transformed into a design/assessment method so that important effects of 
torsion can be anticipated and applied appropriately to design methods to mitigate these effects. 
 
This paper is a step towards satisfying this need for single story structures considering dynamic effects using 
impulse loading, or a nonlinear impulse procedure (NIP). In particular, answers are sought to the following 
questions: 
i) Can a closed-form solution be derived for a single-storey system subject to an impulse based on 

two-degree-of-freedom free vibration concepts? 
ii) What is the applicability of the non-linear impulse procedure (NIP) in the context of a design approach for 

earthquake excitation? 
iii) Can a design approach based on impulse response be developed? 
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2. BENCHMARK STRUCTURE AND MODELLING  
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The benchmark single story building, shown in Figure 1 below, was used in analyses by Castillo (2004). 
Benchmark parameters used in this study are given in Table 1. All analyses used these parameters unless 
expressed otherwise. The floor slab was assumed to be a perfectly rigid diaphragm. 
 
 
 
 
 
 
 
 
 
 
 
 
        (a) Plan View                (ii) Schematic for Modelling 

Figure 1. Benchmark building (Castillo, 2004) 
Table 1. Benchmark Values 

Parameter Symbol Benchmark value 
Mass M 1766 kN 
Rotational mass J Jr= 66225 kNm2

Wall 1 stiffness k1 14212 kN/m 
Wall 2 stiffness k2 KR×k1    (where KR=1) 
Wall 1 yield strength Fy1 220.3 kN 
Wall 2 yield strength Fy2 SR×Fy2   (where SR=1.36) 
Out-of-plane wall stiffness kout KRout×k1  (where KRout=0) 
Bilinear factor r 0.0001 

 
The mass of the square diaphragm was represented as both a point mass, M, and a rotational mass, J, coincident 
with the centre of the rigid diaphragm. The rotational mass associated with Jr was that for a uniformly distributed 
mass over a square floor slab. An in-plane wall stiffness ratio, KR, of 1.0 and a strength ratio, SR, of 1.36 (i.e. Fy2 
= 1.36×220.3 = 300 kN) were adopted as benchmark values. A bilinear factor, r, of 0.0001 was chosen to provide 
post-yield stability for the computer model and approximate elastic perfectly plastic response. The out-of-plane 
walls were modelled as an equivalent rotational spring located at the centre of mass. Herein, out-of-plane wall 
stiffness is specified as a ratio, KRout, of Wall 1’s benchmark stiffness. For all analyses it was assumed that these 
walls would remain elastic throughout the entire response. No out-of-plane walls (KRout=0) were adopted as the 
benchmark.  
 
All NIP analyses were performed using RUAUMOKO-2D (Carr, 2005) using Newmark’s constant average 
acceleration integration method. The impulse, Fi∆t, shown in Figure 2, was a constant force over one time-step, 
∆t, of 0.001 s. Damping was ignored in all impulse analyses to allow a simple closed form solution to be 
developed. The impulse force magnitude was that required to produce a benchmark translational ductility 
demand of 5 for the building with no twist about the vertical axis. This was found to be 105,210 kN, and 
produced an ultimate displacement of 77.5 mm, five times the yield displacement of 15.5mm. 
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3. TWO DEGREE OF FREEDOM MODEL 
 
A generalised 2DOF analytical model was developed to investigate single storey building torsional response to 
impulse using the plan view schematic in Figure 1a. The two degrees of freedom are translation, y, and rotation, 
θ, at the centre of mass. To keep this solution as general as possible, allowance for out-of-plane walls was made, 
given by an equivalent rotational spring of stiffness kr. 
 
The equations of motion for the above system are given in Equation 3.1. This set of equations can be solved (Au, 
2007) to give Equations 3.2 to 3.5. 
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The frequencies, ωi, and mode shapes, Ωi, are found from a free-vibration analysis (M = 0, P = 0) where the 
fundamental frequency, ω1, is the lowest obtained using the negative sign in Equation 3.10. 
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The displacement of each wall in this case can then be calculated by summing the translational response at the 
centre of mass with the additional displacement due to rotation, such that: 
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The solution was found to become unstable when the strength and stiffness of both walls were identical and 
when rotational mass was zero – effectively a SDOF system. While the second degree of freedom could be 
condensed out, a small rotational mass of 1 kNm2 and a 0.01 kN/m difference in wall stiffness was found to 
provide stability without loss of accuracy. 
 
This solution, with specified loading, can be modified to consider elastic free vibration, yielding of the first wall, 
and yielding of the second wall. Specifying a rotational stiffness also allows out-of-plane walls to be considered. 
During the elastic portion of the free vibration response, the 2DOF system has M = 0 and P = 0. Both walls will 
have their respective elastic stiffness of k1 and k2, and the system will have the following initial conditions if the 
impulse duration is very small: , 0=ot 0=oy , io uy && = , 0=θo  and . Here,  is the velocity 
imparted to the structure by the impulse. At yielding of the first wall, Wall 1, its stiffness becomes rk

0=θo
&

iu&
1. The yield 

force in Wall 1 is then represented as a constant force P = Fy1, and moment, M = Fy1L/2, applied at the centre of 
mass. The initial conditions are then the final conditions of the elastic response. When the second wall, Wall 2, 
yields, it now has its post-elastic stiffness, rk2. Similarly, the yield force at Wall 2 can be represented by P = (Fy1 
+ Fy2) and M = (Fy1 - Fy2)L/2 at the centre of mass. The initial conditions are taken as the values when the 
second wall reaches its yield displacement. It should be noted that there is no simple closed form solution for 
the peak response, but the solution can be obtained using simple numerical methods. For layouts with different 
numbers of walls and floor plans, a revised and more complex solution may be developed. 
 
The equations described generally predict the peak wall displacement due to impulse well. However, if the 
second wall reaches its peak displacement before the weaker wall, Wall 1, attains its respective maximum 
displacement, the peak response is not predicted well by the 2DOF solution. This is because Wall 2 is unloading 
and this is not captured in the simple analytical solution. In this case, the peak displacements estimated by these 
equations may be slightly overestimated which would be conservative if they were used for design (Au, 2007, 
Au et al. 2008). 
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4. CONSIDERING EARTHQUAKE EFFECTS USING IMPULSE METHOD 
 
To evaluate the effect of earthquakes on the response of structures, structures with a number of periods and 
configurations were analyzed. The response of the structure was then compared to the impulse response, using 
an impulse magnitude which produced the same translational displacement when torsion was restrained.  
 
The impulse response was compared to an earthquake time history analysis using the 1994 Northridge 
Earthquake (Sylmar) NS record. Analyses were performed on the benchmark structure given in Figure 1a and 
Table 1 using the computer program RUAUMOKO-2D. To approximate the damping in real structures, an 
initial stiffness Rayleigh damping model was used in the earthquake analysis, with 5% of critical damping 
specified in modes 1 and 2. The fundamental period of the frame was 0.5s. Firstly, analysis of the torsionally 
restrained structure was carried out with the earthquake record to obtain the displacement as shown in Figure 
2(a). This shows that the peak displacement occurs over a very short time, so it is reasonable to use an impulse 
approximation to predict the response. The structure required an impulse of 157 MN force acting for 0.001 s to 
push the structure to the same peak displacement as that obtained from the earthquake record (with the 
rotational degree of freedom still restrained). The earthquake and impulse time history analyses were then 
performed again with the rotational degree freedom unrestrained. Figure 2(b) shows that impulse underpredicts 
the peak critical wall displacement by 10%. In general, the impulse response would not be expected to be 
identical to that of the earthquake. 
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(a) Torsion Restrained        (b) Torsion Unrestrained 
Figure 2. Translational response of Critical Wall, Benchmark Structure – Sylmar NS Record  

 
The single record methodology in (a) above was repeated using the 20 LA SAC design level earthquake records 
to statistically quantify the difference between predicted displacements from earthquake time history analyses 
and nonlinear impulse procedures for different structural configurations. Parameters addressed were: excitation 
scale factors for both the impulse and earthquake analyses to produce ductility demands of 1, 2, 5 and 8 in the 
critical wall when torsion is restrained; various masses to achieve periods of 0.1, 0.3, 0.5, 1, 2 and 3 seconds; 
rotational masses of 0, 0.5 Jr, Jr and 1.5 Jr; wall strength ratios of 1, 1.2, 1.36, 2, 3, 5 and 8; out-of-plane wall 
stiffness ratios of 0, 0.1, 0.5 and 1; and lastly, in-plane wall stiffness ratios of 0.5, 0.75, 1 and 1.25.  
 
Impulse and earthquake scale factors were found by iteration using the bisection method prior to each 2DOF 
time history analysis. Iteration continued until the translational (1DOF) ductility was within 1% of the target 
ductility. The subsequent 2DOF simulation, allowing twist, was carried out using the scale factor previously 
found to obtain the peak critical wall displacement. These analyses were automated. The results are plotted as a 
ratio of peak earthquake displacement to peak impulse displacement in Figure 3. The median ± dispersion lines 
represent the 16th and 84th percentile values found by fitting a log-normal distribution.  
 
Figure 3 shows that the median earthquake response of the critical wall considering torsion is similar to the 
impulse response considering torsion for all parameters. Based on a log-normal distribution, the overall median 
of 0.96 and dispersion, which is the standard deviation of the natural logarithm of the data of 0.19, can be used 
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to amplify results from NIP to give a final prediction of peak earthquake response with a specified statistical 
level of confidence. A procedure to do this is described in the following methodology. 
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(a) Variable: Ductility demand    (b) Variable: Translational period 
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(c) Variable: Rotational mass    (d) Variable: Wall strength difference 
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(e) Variable: Wall stiffness difference    (f) Variable: Out-of-plane wall stiffness 

Figure 3. Ratio of peak SAC LA earthquake response to peak NIP response 
Benchmark structure: µ=5, T=0.5s, J=Jr, SR=1.36, KR=0.75 and KRout=0 

 
 
5. DESIGN APPROACH 
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The following step-by-step methodology is proposed for single storey structures with configurations similar to 

at in Figure 1a which are subject to earthquake excitations. 

ure using standard methods assuming that no twist 
occurs about the vertical axis, ∆ . 

 developed above to model the structure. This may be carried out using 

S
logy to model the structure. A realistic kr value should be used. 

 number of standard 

S
 

iven in Figure 4, the fundamental period with no torsion is 0.7s. It is subject to an 
earthquake which produces a total displacement of ∆ = 60 mm when twist about the vertical axis is 

 

th
 
Step 1. Estimate the likely displacement response of the struct

NoTwist

Step 2. Find the impulse, F∆t, that would push the structure to ∆NoTwist, if twist is restrained and no damping is 
assumed, using the 2DOF methodology
a very high value for kr. 
tep 3. Use F∆t to obtain the response of the critical wall, ∆Twist, if twist about the vertical axis is not restrained, 
using the 2DOF methodo

Step 4. Obtain the ratio of earthquake displacement to impulse displacement from the previous section, RE|I for 
the desired statistical level of confidence as 0.96 × exp(0.19 × NS), where NS is the
deviations above the median in a normal distribution to provide a desired level of confidence.  
tep 5. Multiply ∆Twist by RE|I to estimate the demand in the critical element. 

6. DESIGN EXAMPLE 
 
Step 1. For the structure g

ΝοΤwist 
restrained. Any method satisfying code requirements can be used for this displacement prediction. 
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Structural Properties: 
 

T = 0.7 s 
M = 3531 kN 
J = 235400 kNm2 
k1 = 14500 kN/m 
k2 = 14500 kN/m 
kout = 8000 kN/m 
Fy1 = 220 kN 
Fy2 =  Elastic 

 
 

Figure 4. Plan and Properties  

Step 2. By trial and error, the impulse, F ure to ∆ΝοΤwist is a force of 165000 kN 
acting for 0.001s. 

83 mm. This is a 38% increase due to torsion. 

 × exp(0.19 × 1.0) = 1.16. 

∆t, that would push the struct

Step 3. When the structure is permitted to twist about its vertical axis, under this impulse, the response of the 
critical wall, ∆Twist, is found to be 

Step 4. The ratio of earthquake displacement to impulse displacement from Table 2, RE|I, for an overall 84% 
corresponds to one standard deviation above the mean. The ratio is therefore 0.96

Step 5. The estimated displacement demand on the critical element is therefore 1.16 × 83 mm = 96 mm. This 
corresponds to a ductility demand of 6.0. 
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7. CONCLUSIONS 
 
This paper described the use of impulse loading to represent the behaviour of single story structures to 
earthquake shaking. It was shown that: 
 

i)   A simple closed-form solution was derived for a single-storey system subject to an impulse based on 
two-degree-of-freedom free vibration concepts. 

 
ii) The impulse response provides a good indication of the median earthquake response.  

 
iii) A design approach is developed for simple single story structures for different levels of uncertainty of 

torsional response. A design example is also provided. 
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