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ABSTRACT : 

In this research, geometrically nonlinear dynamic analysis of arch concrete dam is attempted. At first, suitable 
models for large deformation analysis of massive plain concrete structures are investigated and by considering arch 
dam special features and properties, proper model for large displacement analysis is developed. A nonlinear analysis 
of the Morrow point arch dam using the Saint Venant–Kirchhoff model for large displacements is carried out under 
an intensive ground motion of order of 1.0g for the peak ground acceleration. Fluid-Structure interaction is modeled 
including water compressibility and reservoir bottom absorption although the foundation is considered as rigid. It 
was indicated that considering large deformation effects could reduces the displacement response of dam. This 
reduction of the peak response observed in this analysis was about 6 % in respect to that of the linear dynamic. 
On the other hand, large deformation effects reduce compressive stresses and increases tensile ones. Values of these 
changes are about 9 % for maximum compressive and 6% for maximum tensile stresses for the same ground motion 
level. Although it could be understood that the structural behavior of an arch dam does not allow large strains in a 
general manner, but one could not rule out the appearance of large displacements, specially under joint-opening. 
Thus it is suggested that for large seismic loads a consistent inclusion of this type of nonlinearity is necessary in 
order to grasp a proper image of concrete arch dam dynamic behavior. 
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1. INTRODUCTION 
  
With respect to catastrophic effects of possible failure of concrete dam, continuous safety evaluation seems essential. 
Investigation on concrete dams has increased extensively during the recent decades. However, considering intrinsic 
complexity of arch dams, there are considerable ambiguities that require more attention. One of the existing 
concerns is geometrical nonlinear dynamic behavior analysis of arch dam considering large displacement subject to 
sever loading such as earthquakes at MCL. This is of great importance not only in view of theory but also in 
practical applications. Construction of new dams in high seismicity sites and even on the active faults are among the 
aforementioned issues examples include Shirvan dam (Iran), Klyde dam (New Zealand), and Steno dam (Greek). In 
all the above cases, actual behavior modeling of concrete arch dam requires geometrical nonlinear analysis [1,2]. 
In the present study, a suitable formulation to geometric nonlinear analysis of arch concrete dam is presented. This 
formulation is implemented in a new finite element code named as GFEAP(Generalized Finite Element Analysis 
Program). Using proposed model nonlinear dynamic analysis of Morrow Point arch dam subjected to intensified 
El-Centro earthquake record was carried out to show large deformation effects. Foundation was supposed rigid and 
soil structure interaction was ignored. Other sources nonlinearity such as joint opening, and concrete material 
nonlinearity were ignored. Only geometric nonlinearity was considered. Fluid Structure interaction was considered 
by numerical solution of Helmholtz equation with appropriate boundary conditions.  
The earlier studies on nonlinear modeling of arch concrete dam categorized in three major group [2]: A)Joint 
nonlinearity modeling including construction joint , lift joint and Dam-Abutment joints. B)Concrete nonlinearity 
behavior modeling including cracking model , Plastic etc. models. C) Foundation nonlinearities including rock joint 
slippage modeling, and also jointed rock material behaviors models. 
Apparently geometric nonlinear behavior of concrete dam was ignored in all the earlier analysis. In spite of the fact 
that geometric nonlinear analysis of shells and plates structures was carried out earlier [2], but to the authors’ 
knowledge no large deformation analysis about concrete dams has been found in the literature [2].  
Chung et al. [3] carried out nonlinear vibration analysis of geometrically shell structures. Large rotation and large 
displacement considered in the model. Total Lagrangian model was used in model with second Piola –Kirchhoff 
stresses and Green Lagrange strain criteria. Yuakim [4] carried out nonlinear analysis of tunnels in clayey/sandy soil 
with a concrete lining. Nonlinear behavior of soil and lining material, Large deformation effects and nonlinear 
behavior of contact between concrete lining and surrounding soil was considered in model. Swaddiwudhipong et al. 
[5] proposed a nine_node element for dynamic analysis of large strain elasto_plastic plate and shell structures using 
update Lagrangian description. Chin et al [6] presented a thin plate element for nonlinear analysis of thin -walled 
structures. Strain supposed small and update Lagrangian approach was used in model. Polak et al. [7] carried out 
nonlinear analysis of reinforced concrete shells. Both geometric and material nonlinearity considered in model. A 
rotating smeared crack model was used for concrete modeling. Geometric nonlinear model considered  Lagrangian 
formulation and saint – venant –kirchoff model. Esmond et al. [8] presented geometric and material nonlinear 
analysis of reinforced concrete shell with edge beams. Concrete model developed based on nonlinear orthotropic 
elasticity. Saint-Venant_Kirchoff model and updated lagrangian model were used in model. Sathurappan et al.[9] 
presented nonlinear finite element analysis of reinforced concrete slabs. Both material and geometric nonlinear 
behavior considered in the model. Material nonlinear model considered plasticity in compression and cracking in 
tension. Total Lagrangian description and Saint Venant Kirchoff model were used in geometric nonlinear analysis. 
Roca,et al. [10] presented nonlinear analysis of reinforced concrete structure considering prestressing tendons. 
Updated Lagrangian model and two dimensional Darwin- Pecknold model were used in analysis. Bathe et al. 
[11].presented nonlinear analysis of concrete model used in ADINA .They recommended using of second Piola 
Kirchhoff stress and Green – Lagrange strain in geometric nonlinear analysis of concrete structures .  
Accounting the hydrodynamic interaction is the other important issue in the dynamic analysis of dam-reservoir. 
Reservoir upstream radiation, and bottom partial absorption of acoustic waves, as well as water compressibility must 
be  considered in modeling 
In the upcoming sections of this paper, the basic concepts and the nonlinear models employed in the program are 
explained briefly at first.  Then, some simple examples are considered to verify the developed program. Later on, the 
nonlinear dynamic behaviour of a typical thin arch dam is studied by the application of the models discussed.  
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2. BASIC CONCEPTS AND METHODOLOGY  

2.1 Large deformation model  
A large deformation model consists of three main parts: A) Mesh Description and Governing equation, B) 
Constitutive Relation and C) Equation Linearization and solution algorithm. 
 
2.1.1Governing equation and Mesh Description  
In general, four description to kinematics modeling in Geometric nonlinear analysis are presented in l technical 
itreature : Spatial or Eulerian Description, Material or Lagrangian Description, Arbitrary Eulerian-Lagrangian 
Description and Co-rotational Description. 
In problems with large element distortation since element accuracy degrades with distortion, the magnitude of 
deformation that can be simulated with a Lagrangian mesh is limited. In Eulerian mesh, on the other hand, since 
finite element mesh is constant during analysis, there is no any distortion dependency in result. However in Eulerian 
mesh description, independency between material motions and mesh motion resulting to difficulty in boundary 
condition implementation. In ALE description node on boundary of initial mesh are constant during deformation and 
middle node move such as element distortion will be minimized.  Indeed this description save all advantages of 
aforementioned approaches and avoided disadvantages of them. In Co-rotational Description initial configuration is 
two parts, stresses and strain calculated from rotated configuration and rigid body motion deduced from initial 
configuration.  
 In general Total Lagrangian description is used for modeling of quasi-continues problems. Update Lagrangian 
description is used to fluid like problem and large strain problem and co-rotational description is used to structural 
elements such as beam, shell and plate. 
In concrete dam analyses, since small strain, element large distortion is not occurs and if initial finite element mesh 
well designed there is no anxiety about distortion and following precise reduction in results. Geometric nonlinear of 
arch concrete dam is a nonlinear problem wit large displacement and small strain. With respect to stage construction 
of  arch concrete dam  and concrete purities itself it expected that  under sever earthquake  loading , dam monoliths  
experienced  large slip and large deformation caused by joint opening and failure  with amount of crashing and 
plastic deformations. So Lagragian description is useful for our purpose. Finite element discritization with 
lagrangian mesh are commonly classified as Total Lagrangian and Update Lagrangian formulation. In the update 
Lagrangian formulation the derivatives are with respect to the spatial coordinates, the weak form involves integrals 
over the deformed (or current) configuration. In the total Lagrangian   formulation, the weak form involves integrals 
over the initial (references) configuration and derivatives are taken with respect to the material coordinates. Each of 
these formulations can be advantageous for certain constitutive equation or loading by reducing the number of 
transformations which are needed. Indeed, if in numerical solution the appropriate constitutive tensors are employed, 
identical results are obtained. From mathematical view point two descriptions are identical and their equation can 
exchange with other easily. However update Lagrangian formulation is more effective than TL formulation 
computationally. It deduced from this fact that UL formulation has not need to calculations of initial stiffness in 
every iterations. Also in using UL formulation the artificial straining is not occurred. In this study every two 
approach implement in code. since the Saint-Venant kirchhoff model at references configuration is used , the update 
lagrangoian for more its transformations  from initial configuration to current configuration has more computations 
In a nonlinear analysis, the equilibrium of the body considered must be established in the current (deformed) 
configuration. also it is necessary to employ an incremental formulation to confidentially describe the loading and 
the motion of the body .Also a suitable constitutive model  is needed . 
In our Lagrangian incremental analysis approach we express the equilibrium of the body at time t+Δt using the 
principal of virtual displacement. Using tensor notation this principle requires that [13]:  

∫
∆+

∆+∆+
∆+

∆+ =
V

tttt
ijttij

tt

tt

RVdeδτ                                    (2.1) 

where : 

ij
tt τ∆+ =Cartesian component of the Cauchy stress tensor , ijtt e∆+δ  =Strain tensor corresponding to virtual 

displacements , Vtt ∆+  = Volume at time tt ∆+  , t+ΔtR  = External forces vector  
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  A fundamental difficulty in the general application of (2.1) is that the configuration of the body at time tt ∆+  in 
unknown. This is an important difference compared with linear analysis in which it is assumed that the displacement 
is infinitesimally small so that in (2.1) the original configuration is used. Also continues changes in the configuration 
of the body entail some important consequence for development of an incremental analysis procedure. For example, 
Cauchy stress and engineering strain are not valid any longer, because their components are not “objective” and may 
change due to pure rigid body motions of structure (or element). One must find the stress and strain measures that 
remain objective in large deformation analysis .In tables 1, 2 the useful strain and stress criteria for use in large 
deformation analysis is presented. With respect to present study requirements The second Piola-Kirchoff stress 
measure and Green Lagrange strain measure are used in TL and UL formulations.  
 

Table 1  Different strain Measures for Large deformation analysis  
Strain Measure Configuration Approach Conjugated Stress Objectivity 
Green-Lagrange Reference Configuration UL, TL Second Piola-Kirchhoff stress Yes 
Almansi Current Configuration UL Cauchy stress No 
Henkey Current Configuration UL Cauchy stress Yes 
Deformation Rate Current Configuration UL Cauchy stress No 

 
Table 2 Different stress Measures for Large deformation analysis  

Stress 
Measure 

Symmetry Configuration Approach objectivity Conjugated Strain Physical 
Interpretation 

Cauchy  Symmetric Current 
Configuration 

UL  NO Almansi ,Green-Lagrange, 
Henkey 

Deformation Rate 

Physical 

First 
Piola-Kirchhoff  

No 
Symmetric 

Reference 
Configuration 

UL, TL Yes Green-Lagrange No Physical 

Second 
Piola-Kirchhoff 

Symmetric Reference 
Configuration 

UL, TL Yes Green-Lagrange No Physical 

Kirchhoff  Symmetric Current 
Configuration 

UL No Almansi, Henkey, 
Deformation Rate 

Weighted 
Cuachy 

 
2.1.2 Constitutive model  
Constitutive models are commonly classified as two major group, Hyperelestic and Hypoelastic models. Also there are 
some minor models such as Mooney –Rivilin , Neo-Hookean , Chauchy elastic model ,etc. Hypoelastic material laws 
relate the rate of stress to the rate of deformation. Hyperelastic models have some necessary requirements of a elastic 
model but not all of them. For example, for large deformation, energy is not necessarily conserved and the work 
done in closed deformation path is not necessarily zero. Hypoelastic laws are used primarily for representing the 
elastic response in phenomenological elasto-plastic laws where the elastic deformation are small, and dissipative 
effects are also small [12]. Hrperelastic materials, on the other hand, are elastic materials for which the work is 
independent of the load path. Hyperelastic materials are characterized by the existence of a stored (or strain) energy 
function that that serves as a potential function for the stress. Hyperelastic models classified as some subgroups 
itself. One of those models is Saint-Venent_Kirchhof model. This model is a suitable model for analysis involved 
large displacement and small strain motions. 
Many engineering applications involve small strains and large rotations. The response of the material may then be 
modeled by a simple extension of the linear elastic laws by replacing the engineering stress by the second 
Piola-Kirchhof stress (see table 2) and linear (engineering) strain by the Green –Lagrange strain (see table 1). This 
model is : 

CES =                                           (2.2) 
where  : 
C =fourth order tensor of elastic moduli, S = Second Piola-Kirchhoff stress tensor, E = Green-Lagrange Strain tensor 
An important characteristic of Saint-Venant-Kirchhoff model is that in large displacement and large rotation but 
small strain analysis the relation in (2.2) provides a natural material description because the components of second 
piola-kirchhoff stress and Green-Lagrange strain tensors follow the objectivity criteria. This observation implies that 
any material description which has been developed for infinitesimal displacement analysis using engineering stress 
and strain measures can directly be employed in large displacement and large rotation but small strain analysis 
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provided second Piola-Kirchhoff stresses and Green-Lagrange strain are used. A practical consequence is, for 
example, that elasto plastic and crack models can be directly employed for large displacement, large rotation, and 
small strain analysis by use of Saint-Venant Kirchhoff material model. Considering that concrete material can not 
experienced large strain and maximum uni-axial strain of concrete is a order of 0.003, so this model, is a suitable 
model for concrete dam modeling in large deformation analysis. 
Equation (2.2 ) in Total Lagrangian Approach is written as[12] : 

 rsijrs
t

ij
t CS ε00 =                                   (2.3) 

That is used in UL Approach again. However in calculating of  internal force Second Piola –Kirchooff stress and 
constitutive tensor are transformed as : 

XXCXXC tttTtTt
t

t
t 000000 ρ

ρ
=  ,    TXtStXttt

0000 ρ

ρτ =
                     (2.4) 

Were : 
Xt

0
 = Deformation gradient , ρρ 0,t  = Initial and current density respectively , τt = Cauchy stress tensor  

In addition of Saint-Venant-Kirchhoff model, to comparison deduced results with commercial software and code 
verification, Neo- Hookean model is used in prepared code also.  

( ) ( )32
1

2
1)( 00

2
0 −+−=Ψ CtraceJLnLnJC µµλ               (2.5)

 
Were : 

)(CΨ  : Potential function, 
00 , µλ  : Lame’s constants , J: Deformation gradient determinant , C: the right Green 

deformation tensor 
 
2.1.3 Equation linearization 
Using the principal of virtual work we express the equilibrium of the body at deformed configuration. This principal 
requires that [13] : 

   0=∆+−∆+ FttRtt                                  (2.6) 
Were  :  

Rtt ∆+ = Vector of external nodal forces at time tt ∆+ (includes weight , hydrostatic and dynamic earthquake load ) 

Ftt ∆+ = Vector of internal nodal forces at time tt ∆+  related to internal stresses. 
Integrals of R, F calculated at current configuration. A fundamental difficulty in the general application of (2.1) is 
that the configuration of the body at time  tt ∆+  is unknown and custom stress and strain measures are not 
objective. So using objective measure of stresses and strain we can convert integrals in (2.1) from unknown current 
configuration to initial or any previously calculated configuration. This  requires that [13] : 

vds
v

vde
v

ij
t

ij
ttt

klttkl
tt

tt

τ
ττ

τ

εδδτ ∫∫ =∆+
∆+

∆+

∆+

                          (2.7) 

Were :  
Sij= Second Piola Kirchhoff stresses   , ijε  = Green Lagrange strain , klτ = Cauchy stresses ,τ  = arbitrary time  
In derivation of equation (2.7) we use the second Piola Kirchhoff stresses and Green Lagrange strain measure. 
Equation of (2.6) however is nonlinear and need to linearization .The Linearized discrete  dynamic  form of 
equations of motion about the state at time t in the UL and TL formulations expressed as [13]:                                   

FtRttUGeoKtMatKtUCttUttM 0)00(
.

0 −∆+=++∆++∆+ &&    in TL                          (2.8) 

FttRttUGeoKtt
MatKttUCtt

tUttM −∆+=++∆++∆+ )(
.

&&    in UL                          (2.9) 

Where GeotMat KKM ,,  are Geometric stiffness matrixes, Material stiffness matrix, Mass matrix, Damping matrix 
respectively. UUU ,, &&&  also are acceleration, velocity and displacement vectors respectively. F and R are defined 
earlier.  
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The linearized form of motion equation can solve by Newton-Raphson family method or other methods 
incrementally.  
 
3. FLUID STRUCTURE INTERACTION 
The governing equation for fluid domain is the Helmholtz equation for hydrodynamic pressure: 

P
C

P &&
2

2 1
=∇                                     (3.1) 

Where p is the hydrodynamic pressure, and C, the acoustic wave velocity in water. The above equation implies small 
displacements of inviscid compressible fluid with irrotational motion. Water compressibility has a significant 
influence on the fluid-structure interaction for a wide range of ratio of natural frequencies of structure to fluid 
domain, including the case of higher and stiffer dams [9]. Thus, for general applicability and completeness of the 
dam-reservoir formulation, one needs to include the reservoir water compressibility.  
Boundary conditions are expressed as : 

0P
g
1

y
P

y
=








+

∂
∂

η=

&&
                               (3.2) 

That is called Cauchy Boundary Condition  for the reservoir-free surface, 

t
P

C
v

n
P

gn ∂
∂

−−=
∂
∂

β
ρ

1
&&                             (3.3) 

for the reservoir bottom partial absorption and normal component of earthquake records  

t
P

C
P

hx
P

∂
∂−−=

∂
∂ 1

2
π                                (3.4) 

for the reservoir upstream face radiation of acoustic waves, and 

n
Pans ∂

∂
−=

r
ρ                                     (3.5) 

For the interaction boundary between dam and reservoir. In the above equations, z is the vertical coordinate, β , the 
acoustic impedance ratio of rock to water, n, the vector perpendicular to the boundary, ρ , the mass density of water, 
g, the gravitational acceleration, and nsa

r , the acceleration of dam upstream face in the normal direction. Here, we 
have assumed that the hydrodynamic waves satisfy the 1-D wave propagation equation (3.4), through the upstream 
reservoir near-field truncation surface. If we ignore first term at right hand of equation (3.4) this boundary, 
sometimes known as the Sommerfeld or viscous boundary, performs well in time domain analysis when applied 
sufficiently far from the structure. The above equations along with the governing equation for the structure would 
lead to a simultaneous differential equations set for the coupled dam –reservoir System. These equations are 
discretized by the finite element method in a standard way similar to that of Ref. [2]. To avoid prohibitively high 
number of nonsymmetrical equations with large bandwidth, the staggering solution method [2] is employed. Here, 
the displacement and the pressure fields are solved alternatively in each time step to achieve ``inter-domain 
compatibility'' or convergence. 

3. COMPUTER IMPLEMENTATION AND VERIFICATION EXAMPLES 
3.1 Computer Implementation  
The proposed models have been implemented at finite element code GFEAP (Generalized Finite Element Code 
Program). GFEAP have capabilities of time history nonlinear dynamic analysis of arch dam, considering material, 
geometrical and construction joint nonlinearity and fluid structure interaction. It was prepared in Tarbiat Modares 
university by writers for complete nonlinear dynamic analysis of gravity and arch concrete dams  
3.2 Preliminary example 
The validity of the proposed models and numerical algorithms has been checked using the available numerical 
results. At the first step, large deformation analysis of a shallow arch has been tested. The second model is a 
geometrical static and dynamic analysis of a plate. 
 
3.1.1. Large displacement analysis of a shallow arch [14 ]  
It is a shallow arch subjected a concentrated load at its centre as shown in fig 1.  Its geometry and mechanical 
properties are presented at fig 1. Twenty 20-node elements are used in modeling. In the fig 2 the analysis results are 
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compared with result of Ref. [14]. As shown in fig 2, the deduced results have excellent compatibility with result of 
ADINA and Mallet, Bereke [14].  

  
    Figure 1 Large deformation analysis of shallow arch          Figure 2 Load deflection curve  

 
3.1.2.Dynamic Large displacement analysis of a simply supported  plate [14 ]  
This model is a square simple supported plate subjected to uniform pressure. Its geometry and mechanical properties 
are presented at fig 3 . One hundred 20-node elements are used in modeling. Neohookean model used as constitutive 
relation. For comparison similar analysis carried out using ANSYS software. The computed centre deflection as a 
function of the load is shown in fig 4. As shown in fig 4 the GFEAP’s results have good compatibility with result of 
ANSYS. To control of dynamic part of code, time history analysis of the plate subject three components of Manjil 
earthquake carried out using ANSYS and GFEAPS. Density of plate was supposed as 2.4 kg/m3. In fig 5. The 
deduced results from tow model are presented.  

 

 
Figure 3 Large deformation analysis of simple supported beam  

 

  
     Figure 5 Displacement time history of plate                  Figure 4  Load deflection curve of plate      

 
 

3.1.3. Large displacement analysis of a Shallow Shell [14]  
This test is a shallow spherical shell subjected to concentrated load in centre of arch. Its properties are presented at 
fig 6 . It is a famous patch test in large deformation analysis of shells and plates. Thirty six 20 node elements are 
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used in modeling. The results are compared with result of ref [14]. The centre deflection of shell versus of applied 
load is captured in fig7. As shown in fig 7 computed results has excellent compatibility with results of Ref[14]. 

 
Figure 6 Shallow spherical shell (Geometry and properties and Finite element mesh) 
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Figure 7 Load deflection curve  

 
4-APPLICATION ON ARCH CONCRETE DAM  
In this section, the nonlinear behavior of Morrow Point arch dam is being studied by application of the models 
discussed above. The dam is 145 m height; with the width of valley at crown elevation is 184 m on the Gunnison 
River in Colorado, USA. This dam is approximately symmetric, single cantered arch dam. Figure 8 shows the 
considered system which includes the finite element model of dam body and the reservoir in which the length of 
reservoir in the upstream direction is about nearly two times the height of dam. Moreover, the dam-foundation 
interaction is neglected. Sixteen 20-node solid element and 180 20-node fluid elements are used to modeling of dam 
body and reservoir domain respectively.  
The module of elasticity, poison ratio, density are 27 GP , 0.2 , 2483 Kg/m3 respectively . Considered internal 
viscous damping ratio is 0.05 for first and fifth vibration modes. Water level elevation for both hydrostatic and 
hydrodynamic pressure calculations is equal to the dam crest elevation (141.73 m). Acoustic wave velocity in water 
is C, 1440.0 m/s. The acoustic impedance ratio of rock to water is, 444.3=β .The ground motion recorded at Taft 
Lincoln School during the Kern County, California earthquake of 21 July 1952 is selected as the free-Field ground 
acceleration (Fig. 9). The records are scaled to 1 g. 
The loads applied on the system are self weight, hydrostatic pressure and seismic load. The standard Newmark 
method is used to integration of dynamic equation in time domain. The Newmark parameters of βα ,  were 
assumed as 0.5, 0.25 respectively. The time integration step was 0.01. The 14 point integration rule is used in 
numerical integration. It was found that this integration scheme compared to costume 3*3*3 integration rule is 
economical [15].The modified Newton Raphson nonlinear solution algorithm is used. Therefore, the structural 
stiffness matrix has to be updated only in beginning of every time steps. Convergence tolerance for nonlinear 
displacement iterations is based on the energy norms defined as 1210*1

)1(
)( −=

E
iE . For pressure iterations in the 

staggering scheme, convergence is based on the pressure norm as 001.0=
∆
P
P . Maximum number of iterations for 

pressure is 8, and for displacement is 10.  
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Figure 8 Dam-reservoir finite element model of Morrow Point arch dam. 

 
 

Horizontal Component                                 Vertical Component 
Figure 9 Original ground motion of Taft Lincoln California Earthquake of 21 July 1952. 

  
Large displacement analysis carried out using Saint-Venant Kirchhoff model. It implies small strain hypothesis. The 
history of displacement in the stream direction of nodal point in the middle of dam crest for linear and nonlinear 
analysis is shown in Figs. 10 The comparison denotes that the results of the two analyses are close to each other. As 
shown in Fig.10 maximum displacement is 6,5 cm for earthquake record scaled to 1g . The difference between linear 
and nonlinear analysis is % 5 for maximum crest displacement. However considering large displacement 
nonlinearity caused to reduction in displacement response of arch dam.  
In Figs. 11, and 12, the time histories of the first principal stresses for the Gauss point 1 of elements 15( in the 
middle of dam crest) and 7 ( in the middle of the dam bottom) are presented. As shown in these Figures, there are not 
noticeable differences between the linear and nonlinear analyses. Only by calculations it is shown that the maximum 
tension stresses is somewhat increased but the compressive maximum stress decreased moderately. 
 In general it could be concluded the for the Morrow Point arch dam large displacement analysis has not consider 
effects on the results. One might have to include foundation interaction effects as well as the dam body material 
nonlinearities and vertical joint-opening behaviors to have a better assessment of this phenomenon.  
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Figure 10  Time history of displacement in stream direction in the middle of dam crest 
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Figure 11 Time history of the first principal stress for the Gauss point 1 of element 15 located in the middle of dam 
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Figure 12  Time history of the first principal stress for the Integration point 1 of element 7 located in the middle of 

dam bottom ,upstream face 
 

5-CONCLUSION 
§ In the present study a methodology to nonlinear analysis of arch concrete dam considering large deformation 

is presented.  
§ The proposed geometrical nonlinear dynamic analysis methods applied to structural elements such as beams, 

shells and plates using three-dimensional elements proved excellent results. 
§  After suitable models for the large displacement analysis of massive plain concrete structures are 

investigated, the arch dam special features and proper model for large displacement analysis are developed. 
Thereafter, a nonlinear analysis of the Morrow point arch dam using the Saint-Venant–Kirchhoff model for 
large displacements is carried out under an intensive ground motion of order of 1.0g. Fluid-Structure 
interaction, water compressibility and reservoir bottom absorption are included. The foundation is considered 
as rigid. It is indicated that considering large deformation effects reduces the displacement response of dam. 
This reduction of the peak response is about 6 % in respect to that of the linear dynamic. On the other hand, 
large deformation effects reduce maximum compressive stresses and increases maximum tensile ones. Values 
of these changes are about  9 % for compression and 6% for tension for the same ground motion level  

§  In addition of earthquake loading, concrete arch dams could experience large deformations due to other 
loadings such as abutment instability in which the dam can slide and experienced large displacements. The 
Malpasset dam failure is a good example. The GFEAP program has been successfully employed for such 
events although not shown here... 

 However, In the present study, foundation is not modeled. Considering foundation flexibility can motivate 
geometric nonlinear behavior of arch dam and highlight the large deformation effects. Also the dam was supposed as 
a continuous body. Considering the vertical construction joints opening and concrete material nonlinearities may 
also result in higher differences between the small and the large displacements analyses results. The above 
conclusions are deduced from the analysis of the Morrow Point arch dam. For a generalization one needs further 
investigation on other dams with various dimension and material properties. 
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