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SUMMARY: 
 
In recent times, earthquake-induced structural pounding has been intensively studied through the use of different 
impact force models. The numerical results obtained from the previous studies verified that the linear 
viscoelastic model is recommended in simulating the pounding force time histories during impact and also 
nominated this model for simulating pounding at high peak ground acceleration levels, as long as there is no 
tensile force involved. The aim of this paper is to overcome this disadvantage by introducing an improved 
version of the linear viscoelastic model by redefining the contact force of the model during two stages of 
contact, i.e. the approach period and the restitution period. This requires the reassessment of the relation 
between the impact damping ratio and the coefficient of restitution. The results for two different impact 
experiments are used in this study. In addition, a suit of thirty ground motion records from thirteen different 
earthquakes is applied to simulate pounding between two single degree of freedom systems of different period 
ratios. The final outcome of this study demonstrates that the results obtained through the modified linear 
viscoelastic model are comparably similar to those found by using the linear viscoelastic model without the 
tension force. 
 
KEY WORDS: approach period; restitution period; pounding force; damping ratio; coefficient of restitution; 
earthquakes. 
 
 
1. INTRODUCTION 
 
Structural pounding during earthquakes has been recently intensively studied by using different models of 
collision applied to different types of structures. Anagnostopoulos (1998) modeled adjacent buildings as single 
degree of freedom lumped mass system with linear viscoelastic model of collision to simulate structural 
pounding. Jankowski et al. (1998) used the same model to study pounding of superstructure segments in bridges. 
 
Other simplified models for pounding investigation have been introduced to represent pounding force during 
collision, for example, the linear elastic model (Maison and Kasai, 1990), the nonlinear elastic model 
(Pantelides and Ma, 1998), the nonlinear viscoelastic model (Jankowski, 2005), and the Hertzdamp model 
(Muthukumar and DesRoches, 2006). 

 
Jankowski (2005) showed that the linear viscoelastic model and the nonlinear viscoelastic model give the 
smallest simulation errors in the pounding force time histories during impact but, in the case of the linear 
viscoelastic model, a negative force just before separation has been observed. 

 
Muthukumar and DesRoches (2006) performed a comparison study using two single degree of freedom (SDOF) 
systems of different period ratios subjected to a suit of 27 ground motion records of different peak ground 
acceleration (PGA) levels from 13 different earthquakes to assess the performance of various pounding models 
for capturing pounding. Numerical results shown in (Muthukumar and DesRoches, 2006) indicate that, for 
high PGA levels the linear viscoelastic model with a coefficient of restitution equal to 0.6, provides smaller 
acceleration amplifications among the considered models, however, it has been shown that the linear viscoelastic 
model is known to result in a sticky tensile forces just before separation of colliding bodies (Hunt and Crossley, 
1975). 

 



 
 
Valles and Reinhorn (1996) proposed a variation of the Kelvin element with force reformulation, where the 
viscous part of the element is only active for positive velocities and allow the masses to release at time 
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)exp()sin( maxmax tte ccd ωξω −= . The previous expression given to compute the coefficient of restitution e is 
not only linked to damping coefficient but also to the masses of the colliding bodies, the stiffness parameter, the 
damped and natural frequency, and the approach time for maximum deformation which leads to a level of 
complexity during the computation process. However, no numerical experiments have been given to investigate 
the performance of the proposed impact Kelvin element (Muthukumar and DesRoches, 2006). 
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In the linear viscoelastic model, the damper is activated during the whole period of collision, i.e. the approach 
period and the restitution period. The pounding force F(t) follows the relation (Anagnostopoulos, 1998) 
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where  and ckktt ),(),( δδ &

k denote the deformation of the colliding bodies, the relative velocity, linear spring 
stiffness and the damping coefficient, which in turn can be related to the linear spring stiffness, the colliding 
bodies masses m1 and m2, and the damping ratio ξ through (Anagnostopoulos, 1998, 2004) 
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This paper aims to eliminate the major shortcoming of the linear viscoelastic model, i.e.  the  sticky  tensile  
force  just  before  separation  of  the  colliding  bodies. With this in mind, two steps are used. The first is 
neglecting the minor energy loss during the restitution period, i.e. the damper is activated only during the 
approach period of collision. The second one is reassessing the relation between the damping ratio and the 
coefficient of restitution. To verify the performance of the modified linear viscoelastic model, both the linear 
viscoelastic model and its modified version are used to simulate the pounding-involved structural response for 
the following numerical experiment. In the first numerical experiments, we use the results of two impact 
experiments. The second numerical experiments applies a suite of thirty ground motion records from thirteen 
different earthquakes with different peak ground acceleration (PGA) levels applied to pounding between two 
single degree of freedom (SDOF) building systems with varying period ratios.  
 
 
2. METHODOLOGY 
 
2.1. Force Reformulation  
 
The damper of the modified linear viscoelastic model is activated only during the approach period of collision in 
order to simulate the process of energy dissipation which takes place mainly during that period (see (Goldsmith, 
1960)). The pounding force can be expressed as 
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2.2. Derivation of the Relations Relating  ξ  and e 
 
The relation between the damping ratio and the coefficient of restitution in Eqn. 1.2 is no longer valid due to the 
activation of the damper in the approach stage only. A reassessment of the relation between the damping ratio 
and the coefficient of restitution based on this reformulation of the pounding force can be derived as follows: 
Let be the approach velocities of the two bodies 1, 2 respectively. The loss in kinetic energies before and after 

impact can be expressed in terms of the coefficient of restitution e and the relative approach velocity  as 
(Goldsmith, 1960) 
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In the modified linear viscoelastic model the damper is activated only during the approach period of collision, 
the dissipated energy by the damper follows the relation 
 

     ∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

==∆ maxmax

0
21

21
0

2
δδ

δδξδδ d
mm

mm
kdcE kk

&&     (2.3) 

 
where  and δ& maxδ  denote the relative velocity and the maximum relative displacement between the colliding 

bodies during the approach period ( > 0), respectively. An expression for the relative velocity , during the 
approach period, in terms of the relative displacement δ has to be obtained to evaluate the integral in Eqn. 2.3. 
For simplicity, we first obtain a formula for the relative velocity  during the restitution period, which is 
considered as elastic period, and later, based on the assumed approximating functions in (Jankowski, 2006), 
the relative velocity , during the approach period, can be obtained in terms of the relative displacement δ. 
Equating the accumulated elastic strain energy at the beginning of the restitution period (i.e. at the point of 
maximum deformation, 

δ& δ&

δ&

δ&

maxδ ) with the kinetic energy at the time of separation 
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where  is the final velocity. The solution of the Eqn. 2.4, for fδ& maxδ yields 
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The relative velocity  can be related to the relative displacement δ& ),0( maxδδ ∈  in the restitution period as 
follows 
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Solving Eqn. 2.6, yields 
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Taking into consideration Eqn. 2.7, and assuming the validation of the formulation 
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relation between the approaching and rebounding relative velocities for δ = 0, as well as all other values of 
deformation during contact, ∈δ  (0, maxδ ), the formula for the relative velocity, , during the approach period 

( ) can be expressed as 
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After substituting Eqn. 2.8, into Eqn. 2.3, we obtain 
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Deriving the formula for from Eqn. 2.5, and substituting it into Eqn. 2.9, and simplifying the resulting 
expression leads to 
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By integrating Eqn. 2.10, the loss in kinetic energy can be written as.  
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Equating Eqn. 2.11,  and Eqn. 2.2  yields 
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Substituting Eqn. 2.5,  into Eqn. 2.12,  and solving for ξ  gives  
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Substituting the formula 
o

fe
δ

δ
&

&
=  into the Eqn. 2.13, allows us to describe the relation between the coefficient 

of restitution and the damping coefficient for the modified linear viscoelastic model according to the formula 
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3. NUMERICAL EXPERIMENTS 

 
We assess the performance of the modified linear viscoelastic model in capturing pounding compared with the 
linear viscoelastic model, through two different procedures of comparison. The first procedure is based on two 



 
 
impact experiments conducted for different types of structural members with various materials and contact 
surface geometries. The accuracy of each model is assessed by calculating the normalized error (N.E.) to 
indicate the difference between the experimental and numerical results (Jankowski, 2005) 
 

       %100..
F

FF
EN

−
=       (3.1)  

 
 where F is the response time history obtained experimentally, F  is the response time history obtained 
numerically, and .  is the Euclidean norm. The second procedure is based on simulation using thirty ground 
motion records from thirteen different earthquakes of peak ground acceleration (PGA) levels ranging from 0.1 to 
1 (Muthukumar, 2003; Muthukumar and DesRoches, 2006). The two single degree of freedom (SDOF) 
systems of structures shown in Figure 1 with equal masses and three different period ratios are subjected to the 
ground motion records. Two cases are considered. In the first case, the initial separation distance is chosen such 
that pounding occurs. The performance of the models is evaluated by comparing the numerically obtained 
displacement and acceleration amplifications to each other. 
 
 
 
 
 
 
 
 

 
Figure 1 Model idealization of adjacent structures 

 
 
3.1. COMPARISON BASED ON CONDUCTED IMPACT EXPERIMENTS 
 
3.1.1. Steel-to-steel impact  
Goland et al. (1955) carried out an experiment to measure load time histories and strain propagation in a square 
beam of different dimensions subjected to sharp lateral impacts by letting a steel ball with diameter ranging from 

8
1

 inch to 
32
9

 inch, drop onto the top of the beam from a specific height. A force gauge was used to measure 

the force-time history exerted by the ball on the beam. The strain gauges were placed at different locations on  
 

the beam to record the strain time histories at those locations. The dynamic equation of motion for pounding 
between a ball of mass m1 dropping onto a beam can be written by drawing the free body diagram (Jankowski, 
2005) as shown in Figure 2 
       gmtFtum 111 )()( =+&&        (3.3) 
 
where g, and F(t) denote the acceleration, gravitational acceleration, and the pounding force respectively. 
The pounding force F(t) follows the relation (1.1), for the linear viscoelastic model and relation (2.1), for the 
modified linear viscoelastic model.. In the experiment the maximum pounding force was 80.7 N when a ball of 

diameter 

),(1 tu&&

32
5

 inch fell from a height of 2 inches (Goland et al. 1955). As for the stiffness parameter in the linear 

viscoelastic model, we set = 2.08 x 10kk 7 N/m3/2 which was determined through an iterative procedure in order 
to keep the maximum pounding force in the numerical analysis and experiment to the same (see (Jankowski, 
2005)). The same procedure is used to obtain the stiffness parameter of the modified linear viscoelastic model, 
which is found to be = 2.10 x 10kk 7 N/m3/2. For the two models, the coefficient of restitution e = 0.6 is used. 



 
 
The results from the numerical analysis and the experiment are shown in Figure 3. Using eqn. 3.1, the 
normalized errors for pounding force histories are found to be equal to 14.95% for the linear viscoelastic model 
and 21.65% for the modified version  
 
 
 
 
 
 

 

Figure 3 Pounding force time histories during 
impact between falling ball and a beam 

 
 
 
 
 
 

Figure 2 Free body diagram of a ball  
dropping onto a beam 

3.1.2. Concrete-to-concrete impact  
 
Van Mier et al. (1991) carried out an experiment on collisions between a prestressed concrete pile and a concrete 
striker. The dynamic equation of motion for pounding between a striker of mass m1 and a prestressed fixed pile  
can be written by drawing the free body diagram (Jankowski, 2005) as shown in Figure 4 
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The pounding force F(t) follows the relation (1.1), for the linear viscoelastic model and relation (2.1), for the 
modified linear viscoelastic model. The stiffness parameter used for the linear viscoelastic model is = 9.29 x 
10

kk
7 N/m3/2. For the modified linear viscoelastic model, = 9.35 x 10kk 7 N/m3/2 was found through an iterative 

procedure in order to keep the maximum pounding force in the numerical analysis equals the maximum 
pounding force of the experiment as 102.5 N. For the two models, the coefficient of restitution is e = 0.6. The 
results from the numerical computations and the experiment are shown in Figure 5. It is found that the 
normalized error equals 23.89% for the linear viscoelastic model and 32.61% for the modified linear viscoelastic 
model. 
 
 
  

Figure 4 Free body diagram for pounding 
between a concrete pendulum and 
prestressed concrete pile

Figure 5 Pounding force time histories during impact 
between a concrete pendulum and prestressed concrete pile 
 

 
 
 
 
 
 
 
 
 
 
 
 
3.2. COMPARISON BASED ON GROUND MOTION RECORDS 
 
Muthukumar (2003) and Muthukumar and  DesRoches (2006) assessed the performance of the Hertzdamp 
model by comparing it to the linear spring, Kelvin, Hertz, and stereomechanical models using two single degree 
of freedom (SDOF) building systems shown in Figure 1. For i = 1, 2, let mi be the masses, ci be the viscous 
damping coefficients, and ki be the stiffiness for SDOF 1 and SDOF 2, accordingly. The coupling equation of 



 
 

motion for two adjacent buildings subjected to horizontal ground motion u  has the following form )g&& (t
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where  and u  represent the displacement, velocity and acceleration of the system respectively.  ),(),( tutu ii & )(ti&&

The pounding force F(t) follows the relation (1.1), for linear viscoelastic model and relation (2.1). for modified 
linear viscoelastic model. The values of structural stiffness and damping coefficients: ki, ci can be calculated 
from the formulas (Harris and Piersol, 2002) 
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where )2,1(, =iT ii ξ  denote the natural structural vibration period and structural damping, respectively. The 
systems were subjected to a suite of thirty ground motion records (Muthukumar, 2003) from thirteen different 
earthquakes with peak ground accelerations (PGA) levels varying from 0.1 to 1. Three ground motion records 
were used at each PGA level with the following parameters == 21 mm  7.8 kip-s2 /in, == 21 ξξ  5% three 
different period ratios of 0.3, 0.5, and 0.7, and the models impact stiffness parameter  25000 kip-in=kk -3/2   with 
coefficient of restitution e=0.6 (see (Muthukumar, 2003)).  The performance of the two models is investigated in 
the process of studying buildings pounding. As suggested in (Muthukumar and  DesRoches, 2006), two cases 
are considered. First is a no pounding case where the gap distance d is set to be large enough to avoid pounding. 
In the second case, the gap distance d is chosen to be small enough to have pounding. The ratio of the maximum 
responses obtained in second case and the first case, called the amplification response, is used in the analysis. 
We solve the equation of motion (3.5), for the thirty ground motion records and the three different period ratios. 
The obtained amplification factor for displacement and acceleration of both SDOF 1 and SDOF 2 indicates that 
the two models provide similar displacement, velocity and acceleration amplifications for the whole PGA levels 
and the different period ratios considered herein, due to the space limitations, only numerical results for period 
ratio of 0.3 presented in Figure 4.  
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Figure 4 Mean displacement and acceleration amplification for elastic system 
USIONS 

ination of the sticky tensile force of the linear viscoelastic model has been conducted in this paper. An 
d version of the linear viscoelastic model which overcomes the disadvantage of the tension force 
g just before separation in the linear viscoelastic model is introduced. The used technique is based on 
g the minor energy loss during the restitution period by activating the damper only during the approach 

f collision in order to simulate the energy dissipation which takes place mainly during this period. In 
 a relation relating the damping ratio and the coefficient of restitution has been derived due to the 
 of the minor energy loss. The validity of the proposed modified model with respect to the linear 



 
 
viscoelastic model has been assessed through conducted impact experiments as well as pounding between two 
single degree of freedom systems with different period ratios subjected to thirty ground motion records of 
different PGA levels.  
The normalized errors obtained using both the linear viscoelastic model and the modified linear viscoelastic 
model, in the impact force time histories, show a small difference between the two models.  
The results of further analysis indicate that both the linear viscoelastic and the modified linear viscoelastic 
models provide similar displacement, velocity, and acceleration amplifications of the response of colliding 
SDOF building systems for three different period ratios and different PGA levels of ground motions. 
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