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ABSTRACT 
 
Probabilistic seismic demand analysis (PSDA) is an approach for computing the mean annual frequency of 
exceeding a specified seismic demand for a given structure at a designated site, which combines the 
conventional probabilistic seismic hazard analysis (PSHA) of the designated site with nonlinear dynamic 
analysis (NDA) of the given structure. Now PSDA has already become an important part of the new-generation 
Performance Based Earthquake Engineering (PBEE) proposed by PEER. The commonly used nonlinear demand 
estimation method in PSDA is the so called “cloud analysis” procedure in which a cloud of demand values are 
generated when a structure is subjected to a suite of earthquake ground motion records. However, this method 
can only take into account the record-to-record (RTR) variation in ground motions without considering the 
random system properties of structures. In this paper, an improved cloud method based on Latin Hypercube 
Sampling (LHS) method is proposed to build probabilistic seismic demand models (PSDM) to consider inherent 
randomness both in structures and in ground motions. Furthermore, probabilistic seismic demand fragility 
analysis (PSDFA) and probabilistic seismic demand hazard analysis (PSDHA) are made based on the improved 
probabilistic seismic demand models. The methodology is applied in a three-bay and five-storey R.C. frame as 
an example. The probabilistic seismic demand models with the conventional cloud method and the improved 
cloud method are compared, and the probabilistic seismic demand fragility curves and hazard curves are derived 
respectively. 
 
KEYWORDS: Seismic Demand, Improved Cloud Method, Probabilistic Seismic Demand Model, Seismic 
Demand Fragility, Seismic Demand Hazard 
 
1. INTODUCTION 
 
Developing from the conventional probabilistic seismic hazard analysis (PSHA) of a designated site, 
probabilistic seismic demand analysis (PSDA) is an approach for computing the mean annual frequency (MAF) 
of exceeding a specified seismic demand for a given structure at a designated site, which couples a ground 
motion hazard curve for the designated site from PSHA with demand results from nonlinear dynamic analysis 
(NDA) of the given structure under a suite of earthquake ground motion records (Shome & Cornell, 1998; 
Shome, 1999). As one of central cores of probabilistic seismic performance assessment, seismic reliability 
analysis, seismic fragility analysis and seismic risk analysis, PSDA has already become an important part of the 
probabilistic decision-making framework of the new-generation performance-based earthquake engineering 
(PBEE) proposed by PEER (Cornell & Krawinkler, 2000; Moehle & Deierlein, 2004). 
The commonly used nonlinear demand estimation method in PSDA is the so called “cloud analysis” procedure 
in which a cloud of demand values are generated when a structure is subjected to a set of earthquake ground 
motion records. However, this method can only take into account the record-to-record (RTR) variation in ground 
motions, or in other words, it generally takes the analyzed structure as a deterministic one without considering 
the inherent random properties of the system. 
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In order to overcome the shortcomings of the traditional cloud method in PSDA, an improved approach 
combining cloud method (Mackie & Stojadinovic, 2001) with Latin Hypercube Sample (LHS) method (Hwang, 
et al., 2001) is firstly proposed in this paper. The PSDA is run on three levels: probabilistic seismic demand 
model (PSDM) building, probabilistic seismic demand fragility analysis (PSDFA), and probabilistic seismic 
demand hazard analysis (PSDHA). PSDM is the core of PSDA, and also the basis for PSDFA and PSDHA, 
which represents the functional relationships between ground motion intensity measures (IMs) and engineering 
demand parameters (EDPs) of structures. PSDFA is used to provide the conditional failure probabilities of 
exceeding demand limit states of structures given a spectrum of IM levels, and generates a series of seismic 
demand fragility curves of a structure corresponding to the demand limit states. On the other hand, PSDHA is 
done to estimate the mean annual frequency of exceeding a given demand level, and results in a seismic demand 
hazard curve of the structure in a conjectured seismic hazard environment. As a case study, the developed 
methodology is applied in a three-bay and five-storey R.C. frame structure designed according to Chinese 
seismic design code of buildings (GB50011-2001). The spectral acceleration corresponding to the fundamental 
period of structures, i.e. Sa(5%,T1), is selected as IM. The maximum inter-storey displacement angle (ISDA) is 
chosen as the global EDP of structures. The classical cloud method and the improved cloud method are both 
employed to run the PSDA, and the PSDMs from the two methods are compared. The PSDFA and PSDHA are 
carried on using the different PSDMs. It is demonstrated that the PSDMs without considering random system 
properties in structures will under-estimate the potential hazard probability of structures. 
 
2. CLOUD METHOD AND ITS IMPROVEMENT 
 
2.1. Cloud Method 
The commonly used nonlinear demand estimation method in PSDA is the so called “cloud analysis” approach in 
which a cloud of demand values are generated when a structure is subjected to a suite of earthquake ground 
motion records. The main ingredients of cloud method to formulate the PSDMs of interest are as follows: 
(1) Assemble a suite of N ground motions which are applicable to the area of interest. This suite should 
represent a broad range of values of the chosen intensity measure. Actually, the “cloud” describes the selection 
of earthquakes with variable IMs. The artificial or synthetic site-specific ground motions can be used just like in 
Monte Carlo simulation. However, the most commonly used method is the bin approach which subdivides 
ground motions into hypothetical bins based on magnitude (Mw), epicentral distance (R), and local soil type 
(Shome et al., 1998), as shown in Figure 1(a). As a result, the record-to-record random properties in ground 
motions can be considered thoroughly. In this paper, the ground motion records are selected according to the 
four bins shown in Figure 1(a), and the spectral acceleration Sa(T1) corresponding to the fundamental period of 
the structure is selected as an intensity measure. 
(2) Select the class of structures to be investigated. Associated with this class are a set of engineering demand 
parameters that can be measured during analysis to assess structural performance under the considered motions. 
In this paper, the maximum inter-storey displacement angle (ISDA) θmax of structures is chosen as an 
engineering demand parameter. 
(3) Build the nonlinear finite element model to character the class of structures selected, with provisions to vary 
designs of the class through the use of design parameters. Thus, a portfolio of structures is generated by 
different realizations of the design parameters. The finite element model should capture the material and 
geometric nonlinear characteristics in the structure. 
(4) Perform a full nonlinear time history analysis of the structure subjected to the selected ground motion record 
until all ground motions and structural model combinations have been exhausted. Key responses or demand 
parameters should be monitored throughout the analysis. 
(5) Record and plot the peak values of the selected engineering demand parameter (EDP) versus the value of 
intensity measure (IM) for that ground motion, as shown in Figure 1(b). A regression of this cloud of data is 
then used to derive the PSDMs between ground motion intensity measures and structural engineering demand 
parameters. 
2.2 Improved Cloud Method 
Earthquake is a low-probability, high-consequences, and large-uncertainty hazard event. The above-mentioned 
cloud method can only consider the inherent randomness in ground motions in the form of record-to-record 
variation. It cannot take the inherent randomness in structural systems and the epistemic uncertainty in modeling 
into account, although it does consider a class of structures through varying the design parameters. 
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(a) Ground motion bins (b) PSDM 
Figure 1 Sketch diagram of cloud method 

 
In order to consider the random system properties of structures, the samples of structures should be generated by 
Monte Carlo simulation (MCS) to group into motion-structure pairs with the selected ground motions. However, 
the crude MCS usually requires a large number of seismic response simulations in order to obtain accurate 
statistics of the structural EDPs of interest. To reduce the number of crude MCS, many variance reduction 
techniques have been invented, among which, Latin hypercube sampling (LHS) is a comparatively efficient 
method (Hoshino & Takemura, 2000). As a stratified sampling approach, LHS can provide reliable estimates of 
the response statistics with a significant smaller number of samples that required by crude MCS. It has been 
proved by numerous researchers that for a given number of random samples of structures, the variance in the 
response statistics obtained from LHS is much smaller than that obtained from crude MCS. 
To combine Latin hypercube sampling with the cloud method in PSDA in order to consider the random system 
properties of structures, in this paper, the range of each random system property is divided into the same number 
of segments with equal probability as the number of input ground motions at the specified seismic hazard level. 
From each segment, one representative sample, taken as the median value of the segment, is selected. Then, in 
the nonlinear time history simulations, the samples of all variables are randomly matched without replacement 
in sets containing one sample from each input random variable; these sets are finally matched randomly to the 
input ground motions. As a result, Latin hypercube sampling causes the entire range of each random variable to 
be represented in the set of variables used in the simulation. The basic procedure of the improved cloud method 
based on LHS is as follows: 
(1) Assemble a suite of N ground motions according to the bin approach shown in Figure 1(a); 
(2) Select the class of structures of interest and the corresponding engineering demand parameters; 
(3) Build the nonlinear finite element model of the subject structure; 
(4) Quantify the aleatory randomness and epistemic uncertainty in structural systems; 
(5) Generate N statistical samples of the subject structure by LHS, these samples should be generated by 
sampling on various modeling parameters which may be deemed significant (e.g. material strength, geometric 
size, damping ratio, etc.);  
(6) Establish a set of N ground motion-structure pairs according to the strategy in LHS; 
(7) Perform a full nonlinear time history analysis for each ground motion-structure sample to simulate a cloud of 
structural response data; 
(8) Regress this cloud of data to derive the PSDMs between IMs and EDPs. 
 
3. PROBABILISTIC SEISMIC DEMAND ANALYSIS BY IMPROVED CLOUD METHOD 
 
3.1. Probabilistic Seismic Demand Model (PSDM) 
The probabilistic seismic demand models (PSDMs) are results of the improved cloud analysis in PSDA, which 
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provide the relationships between IMs and EDPs. The randomness in seismic demand of structures comes both 
from the random input earthquake ground motions and from the random system properties. 
Let us denote the ground motion intensity measure by Sa, the random engineering demand parameter by D. The 
demand D can be written in terms of the product of it median value D̂  and a random error ε: 

 ˆD Dε=  (3.1) 
It is generally assumed that ε can be represented by a lognormal distribution with median and standard deviation 
of lnε: 

 
ln |

ˆ 1

aD Sε

ε
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 (3.2) 

where, | aD Sβ  is called dispersion, which is a model error in nature depending to some degree on the level of Sa, 
we assume that it is constant. 
The best estimate of the resulting demand model D̂ , is defined as the median, or the mean of the natural log of 
the N IM-EDP data points: 
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where, Di is the ith EDP data. 
The dispersion is dependent on the number of parameters (df) being estimated in a linear regression on the EDP 
data: 
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where, df =2, since we only have two parameters D and Sa. 
It has been observed by numerous researchers that the median demand and the spectral acceleration follow the 
typical power law relationship: 

 ˆ ( )b
aD a S=  (3.5) 

where, a and b are parameters, which can be determined from linear least-squares regression technique. 
In evidence, the relationship between the median demand and the spectral acceleration in the log space is linear: 

 ˆln( ) ln( ) ln( )aD a b S= +  (3.6) 
 
3.2. Probabilistic Seismic Demand Fragility Analysis (PSDFA) 
PSDM can be used to provide probabilities of exceeding demand limit states, given measure of intensity. Such a 
relationship is termed a demand fragility curve. Therefore, the demand fragility can be defined as a conditional 
failure probability that drift demand D exceeds a certain drift limit d, given a specific spectral acceleration Sa: 

 ( ) [ | ]R aF x P D d S x= > =  (3.7) 
The fragility is modeled commonly by a lognormal cumulative distribution function (CDF), a choice that has 
been supported by numerous research programs during the past decade in disparate fields. Then it is described 
by 

 ( ) [ln( / ) / ]R R RF x x m β= Φ  (3.8) 
where, mR is the median spectral capacity, βR is the logarithmic standard deviation, and Φ[] is the standard 
normal integral. The parameters mR and βR measure the inherent randomness in seismic capacity. 
With the assumption that the seismic demand can also be described by a lognormal distribution, with median as 
defined in Eq. (3.5) and dispersion as defined in Eq. (3.4), we can determine the parameters in Eq. (3.8). Note 
that Eq. (3.7) can be further rewritten as: 
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Substituting Eq. (3.5) in Eq. (3.9), one has 
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Comparing Eq. (3.8) with Eq. (3.10), we can obtain the parameters mR and βR as follows: 
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d am
b
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (3.11) 

 |D IM
R b

β
β =  (3.12) 

The demand limit states are multiple levels corresponding to the different seismic damage states, or seismic 
performance levels of structures. For example, we generally classify the seismic damage states of structures into 
five levels: intact, minor damage, moderate damage, severe damage, and collapse. Therefore, the corresponding 
four levels of demand limit states are: equal to or larger than minor damage demand, equal to or larger than 
moderate damage demand, equal to or larger than severe damage demand, and equal to or larger than collapse 
demand. In order to characterize the four performance levels, we denote the four deterministic limit values of 
drift demand as 

LS
( 1, 2,3, 4)id i = . Then, we can derive the four levels of seismic demand fragilities: 

 ( ) [ | ] [ln( / ) / ]i
Ri LS a Ri RF x P D d S x x m β= > = = Φ  (3.13) 
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3.3. Probabilistic Seismic Demand Hazard Analysis (PSDHA) 
PSDM can be also used to estimate the mean annual frequency of exceeding a given demand, and results in a 
structural demand hazard curve in a conjectured hazard environment. Actually, demand hazard curve is the final 
result of PSDHA, just like the seismic hazard curve of the site in the conventional PSHA. 
The demand hazard is defined as the probability of failure of exceeding a given demand under a spectrum of 
possible earthquakes, which is determined by convolving the demand fragility curve of the structure and the 
seismic hazard curve of the designated site: 

 ( ) [ ] [ | ] | ( ) | ( ) | ( ) |
a aD a S R SH d P D d P D d S x dH x F x dH x> = > = =∫ ∫  (3.15) 

where, ( )
aSH x  is the seismic hazard function derived from PSHA of the site. 

For specific building sites, it has been shown by many researchers that at moderate to large values of ground 
acceleration, there is a logarithmic linear relation between first modal spectral acceleration Sa and the 
exceedance probability HSa(x) (Cornell et al., 2002). This relationship implies that Sa can be described by a Type 
II distribution of largest values 

 0 0( ) [ ] 1 exp[ ( / )]
a

k k
S aH x p S x x k k x− −= > = − − ≈  (3.16) 

where k0 = characteristic extreme, k = shape parameter. 
The hazard curve can be approximately linear on a log-log plot in the region of interest (Cornell et al., 2002): 

 0( )
a

k
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After integration of lognormal demand fragility function defined in Eq. (3.10) and derivative of seismic hazard 
function presented in Eq. (3.17), the demand hazard in Eq. (3.15) can be obtained as an explicit formulation 
(Cornell et al., 2002): 
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where, d
aS  represents the spectral acceleration corresponding to a specific drift limit d. Their relationship is 

defined in Eq. (3.5), which can be transformed to the following expression 
 1/( / )d b

aS d a=  (3.19) 
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Then, ( )d

aH S  is the seismic hazard with spectral acceleration of d
aS , representing the probability of ground 

motion intensity that cause drift d or more. 
Eq. (3.18) is the most important result of PSDHA, from careful inspection of it, we can see that the seismic 
hazard curve for the drift demand HD(d) is equal to the seismic hazard function of the site evaluated at the 
spectral acceleration corresponding to this drift demand, times a correction factor related to dispersion in the 
drift demand estimation for a given spectral acceleration. 
 
4. CASE STUDY: R.C. FRAME STRUCTURES 
 
4.1. Basic Data 
A three-bay and five-storey R.C. frame structure, as shown in Figure 2, is taken as the example in this case study. 
It is designed according to Chinese seismic design code of buildings (GB50011-2001). 
 

 
 

Figure 2 Three-bay and five-storey R.C. frame 

 
4.2. PSDM Based on Cloud Method 
The Sa(5%,T1) is chosen as the IM, and the maximum ISDA θmax is chosen as the EDP. 100 ground motion 
records are selected from the database of PEER. We take Ms = 5.7 and D = 30(km) as the limit values to carve 
these ground motion records into four bins, as shown in Figure 1(a). 
The nonlinear finite element model of the structure is developed by OpenSees platform. Without considering the 
random system properties, the nonlinear time history analysis is done for the model subjected to the 100 sets of 
ground motion records. The PSDM based on cloud method is obtained via log-linear regression method as 

 max
ˆln( ) 1.0071ln( ) 3.6852aSθ = − , | 0.27

aD Sβ =  (4.1) 
The PSDM in this case is shown in Figure 3(a). 
 
4.3. PSDM Based on Improved Cloud Method 
In this case, we consider four random material properties of the structure: the yield strength fy and initial elastic 
modulus E of steel; the compressive strength fc and crushing strength fcr of concrete. The statistics of the four 
random variables are shown in Table 4.1. All variables are assumed as normal distribution, and independent on 
each other. 

Table 4.1 Statistics of random variables 
Distribution parameters Distribution parameters Variables Mean value Std Variables Mean value Std 

2(N/mm )yf  384.80 28.59 2(N/mm )crf  27.32 4.44 
2(N/mm )E  204000 2040 2(N/mm )cf  26.10 4.44 
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According to the strategy in the improved cloud method, the 100×4 matrix of random samples is firstly 
generated by using LHS method, and 100 samples of the finite element model are obtained. Then 100 couples of 
ground motion records and structural samples are combined. The nonlinear time history analysis is exhausted 
for all ground motion-structure pairs. From the recorded spectral acceleration-ISDA results, the PSDM 
considering the random system properties is derived by using the improved cloud method: 

 max
ˆln( ) 1.0211ln( ) 3.5718aSθ = − , | 0.30

aD Sβ =  (4.2) 
The PSDM in this case is shown in Figure 3(b). 
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Time history analysis results
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Time history analysis results

ln(ISDA)=1.0211ln(Sa)-3.5718  R2=0.9462  σ2=0.30

(a) Cloud method (b) Improved cloud method 
Figure 3 PSDM in two cases 

 
4.4. Drift Demand Fragility Curves 
In Chinese seismic design code of buildings (GB50011-2001), the limit value of the maximum ISDA for R.C. 
frame structure in elastic serviceability limit state is 1/550, while in elastoplastic collapse limit state 1/50. In this 
paper, the four levels of drift demand limit state are chosen as: 1

LS 1/ 550d = , 2
LS 2 / 550d = , 3

LS 4 / 550d = , 

and 4
LS 1/ 50d = . 

The drift demand fragility curves based on the above PSDMs are shown in Figure 4. From Figure 4, we can see 
that the drift demand fragility curves based on the PSDMs without considering random system properties tend 
to be less than that based on the PSDMs considering random system properties. It means that drift demand 
fragility curves without considering random system properties under-estimates the conditional failure 
probability given the occurrence of the earthquake ground motion. 
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Figure 4 Drift demand fragility curves based on different PSDMs 
 
 
4.5. Drift Demand Hazard Curves 
As shown in Figure 5, the seismic hazard curve of PSHA of the site in this example is approximated as 

 2.381( ) 0.038 ( )SaH x x −= ⋅  (4.3) 
In Figure 5, Sa(63,2%, 50yr), Sa(10%, 50yr) and Sa(2%, 50yr) are the values of Sa(5%, T1) corresponding to 
different exceedance probabilities in 50 years. 
The drift hazard curves coupling the seismic hazard curve and the drift fragility curves based on different 
PSDMs are derived, as shown in Figure 6. 
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Figure 6 Drift demand hazard curves based on 
different PSDMs 

 
From Figure 6 we can see that, the drift demand hazard curve based on the PSDM without considering random 
system properties is lower than that based on the PSDM considering random system properties. That is to say, 
PSDFA without considering random system properties can under-estimate the potential hazard probability of 
structures. It is similar to the conclusion obtained from Figure 4. Therefore, it is necessary to consider random 
system properties of structures when carrying on PSDA. 
 
5. CONCLUSIONS 
 
This paper proposes an improved cloud method in PSDA to consider random system properties of structures, 
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which is a coupling of the conventional cloud method and Latin hypercube sampling (LHS) method. The 
probabilistic seismic demand analysis of structures is carried on three levels: PSDM building, PSDFA and 
PSDHA. A three-bay and five-storey R.C. frame structure is taken as a case-study example. The PSDMs based 
on cloud method and improved cloud method are derived and compared. The demand fragility and hazard 
curves are obtained by PSDFA and PSDHA, respectively. The conclusions are summarized as follows. 
(1) The improved cloud method proposed in this paper can efficiently consider random system properties in 
PSDA. 
(2) Both PSDFA and PSDHA without considering random system properties tend to under-estimate the 
structural potential seismic hazard. Therefore, it’s necessary to make PSDA considering random system 
properties.  
 
6. ACKNOWLEDGEMENTS 

The support of National Science Foundation of China through projects (Grant No. 90715021, 50678057, 
50108005) is greatly appreciated. Any opinions, findings, and conclusions or recommendations expressed in this 
material are those of the authors and do not necessarily reflect those of the National Science Foundation of 
China. 

 
REFERENCES  
 
Cornell, C.A, and Krawinkler, H. (2000). Progress and challenges in seismic performance assessment. PEER 
Ceneter News 3:2, 1-4. 
Cornell, C.A, Jalayer, F, Hamburger, R.O, and Foutch, D.A. (2002). Probabilistic Basis for 2000 SAC Federal 
Emergency Management Agency Steel Moment Frame Guidelines. ASCE Journal of Structural Engineering 
124:4, 526-533. 
Hoshino, N, and Takemura, A. (2000). On reduction of finite sample variance by extended Latin hypercube 
sample. Bernoulli, 6:6, 1035-1050. 
Hwang, H, Liu, J-B, and Chiu, Y-H. (2001). Seismic Fragility Analysis of Highway Bridges. Report. Center for 
Earthquake Research and Information. 
Mackie K, and Stojadinovic, B. (2001). Probabilistic seismic demand model for California highway bridges. 
ASCE Journal of Bridge Engineering 6:6, 468-481. 
Moehle, J. and Deierlein G.G. (2004). A framework methodology for performance-based earthquake 
engineering. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 1-6 
(CD-ROM). 
National Standard of China P.R. (2001). Seismic Design Code of Buildings (GB50011-2001). Building Industry 
Press of China, Beijing. 
Shome, N, Cornell, C.A, Bazzurro, P, and Caraballo, J.E. (1998). Earthquakes, records, and nonlinear responses. 
Earthquake Spectra 14:3, 467-500. 
 
 


