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ABSTRACT : 

The present work develops a novel procedure of establishing a neural network for a time varying system 
and estimating the instantaneous modal parameters of the system from the established neural network. The
connective weights and thresholds in a neural network are assumed as functions of time and are expanded by
shape functions constructing by a moving least-squares technique with polynomial basis functions. The 
instantaneous modal parameters of the system are directly estimated from the connective weights. The 
feasibility of the proposed procedure is demonstrated by processing numerically simulated dynamic responses
of a time-varying linear system. The proposed procedure is also applied to process the dynamic responses of a 
five-story steel frame, subjected to 10% and 60% of the strength of the Kobe earthquake, in shaking table tests.
The steel frame responded nonlinearly when it subjected to 60% Kobe earthquake, while it responded linearly
under 10% Kobe earthquake input. This work further assesses the possible damage in the steel frame based on
the instantaneous modal parameters identified from the responses corresponding to different strengths of the
Kobe earthquake. 
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1. INTRODUCTION 
 
A structure may sustain damage either when subjected to severe loading like a strong earthquake or when its 
material deteriorates. Damage is traditionally assessed by visual inspection, which method is costly but 
inefficient. Various innovative sensor technologies have recently been developed and applied to monitor 
buildings and infrastructure. It is desirable to use the measured data to determine whether a structure is 
damaged and, further, the nature of any such damage. 
 
The damage of a structure is often assessed from observed dynamic responses by detecting changes in the 
modal parameters of the structure (Hearn and Testa, 1991; Alampalli and Fu, 1993; Koh et al., 1995). The 
concept underlying such an approach is that damage to a structure reduces its natural frequencies, increases the 
modal damping, and changes the modal shapes. When a structure is damaged under a severe dynamic loading, 
the structure often shows some nonlinear behaviors, which means that the dynamic characteristics of the 
structure are time dependent under such dynamic loading and the modal parameters at any moment can be 
different. However, in the mentioned convention approaches for diagnosing the health of a structure based on
modal parameters, the modal parameters are found from an equivalent linear system fitting the nonlinear 
dynamic responses. They cannot really describe the time dependent behaviors of modal parameters.
Consequently, it is very desirable to develop an approach to accurately determine the modal parameters varying
with time.  
 
Over the last two decades, artificial neural networks (ANN) have gradually been established as a powerful tool 
in pattern recognition, signal processing, control, and complex mapping problems, because of their excellent 
learning capacity and their high tolerance to partially inaccurate data. Various types of neural networks have 
been applied to establish input-output relationship of a nonlinear system from its dynamic responses and input
forces. For example, Huang et al. (2003) applied a conventional back-propagation neural network to establish 
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input-output relationship of a time-invariant nonlinear system from its seismic response data while Hung et al. 
(2003) and Adeli and Jiang (2006) utilized wavelet neural networks. Gu et al. (2003) proposed different
methodologies for constructing an ANN for a time-variant nonlinear system. However, accurately establishing 
an ANN model itself is not enough for performing damage assessment for a structure. Huang et al. (2003) are 
the pioneers to develop an proper procedure to estimate the modal parameters from an ANN. Then, health 
diagnosis for a structure was carried out through examining the estimated modal parameters.  

This paper extends the work of Huang et al. (2003) to a time-variant system. The concept of establishing an 
ANN model from dynamic responses and input forces of a structure is similar to that proposed by Gu et al. 
(2003). Instead of using Slepian base to represent the time-variant weights in an ANN, this paper proposes a 
moving least-squares algorithm to construct shape functions for expanding the time-variant weights and 
thresholds. After establishing a proper ANN for a time-variant system from its dynamic responses and input 
forces, an approach is proposed to determine the time-variant modal parameters (also called as instantaneous
modal parameters) of the system from the weights of the established ANN. Numerical simulations are 
performed to validate the proposed procedure in accurately estimating the instantaneous modal parameters.
Then, the proposed procedure is applied to process the dynamic responses of a five-story steel frame, subjected 
to 10% and 60% of the strength of the Kobe earthquake, in shaking table tests. The steel frame responded
nonlinearly when it was subjected to 60% Kobe earthquake, while it responded linearly under 10% Kobe 
earthquake input. This work further assesses the possible damage in the steel frame based on the identified 
instantaneous modal parameters. 
 
 
2. THEORECTICAL FORMULATION 
 
Consider a three-layered ANN as depicted in Fig. 1, including an input layer, one hidden layer, and an output 
layer. The nodes in each layer are connected to each node in the adjacent layer. The computed output of the ith 
node in the output layer is defined as follows.   
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where ijw are the connective weights between nodes in the hidden layer and those in the output layer, jkv  are

the connective weights between nodes in the input layer and those in the hidden layer, wiθ (or jνθ ) are bias 

terms representing the threshold of the transfer function g (or h), and kx  is the input of the kth node in the 
input layer. Terms ohi NNN  and , ,  are the number of nodes in input, hidden, and output layers, respectively.
The transfer functions can be linear or nonlinear. 
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 Figure 1 A typical three-layer neural network         Figure 2 Numerical simulation model  
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To consider a time varying system, the connective weights and thresholds are assumed to be time dependent. 
Accordingly, expand them by shape functions as follows: 
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where jkla , ijlb , jlc , and jld are constants, and )(tlφ are shape functions. As a matter of fact, the weights 
and thresholds can be expanded by different sets of shape functions. However, for simplicity, the work uses the 
same set of shape functions for all weights and thresholds and sets LKKLL wvwv ==== .  
 
Various types of basis functions such as Legendre polynomials, Walsh functions and wavelets can be directly 
chosen as the needed shape functions. When polynomial basis functions are used, numerical difficulties are 
often enfaced when a large number of basis functions are used. To overcome this problem, a moving 
least-squares algorithm is applied to construct )(tlφ  from polynomial basis functions. Use ijv as an example
to show the procedure of constructing )(tlφ . Let 
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Vector a is determined by minimizing the error function defined as 
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where ),( lttW  is a weighting function that is positive definite, and vL  is the number of nodal points for 
)(tvij . Notably, one can use different values of vL  or different weighting functions for different )(tvij . Herein, 

),( lttW defined in Eqn (2.5) is used,  
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where md is the support of W, and c defines the decrease rate of W from t=tl to ml dtt =− . Minimizing E
and following the procedure given in Liu (2003) for developing a meshfree approach to solve solid mechanics 
problems yield 
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It should be noted that the established )(tlφ  has a finite support if the chosen weighting function ),( lttW in 
Eqn. 2.4 has a finite support, so that )(tlφ  has better ability of describing local behaviors of )(tvij than the 
traditional polynomial basis functions have.  
 
Substituting Eqn. 2.2 into Eqn. 2.1 leads to  
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Then, to construct an ANN, one needs to determine the coefficients jkla , ijlb , jlc , and jld  that can be found 
through the traditional least-squares approach. A system error  function is defined as 
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where )y~ ~ ~ ~(~
o21 Niyyy LL=Y ; )y   ( 21 oNiyyy LL=Y ; iy~  is the desired (or measured) value of output 

node i. Notably, E~ depends on jkla , ijlb , jlc , and jld . One determines jkla , ijlb , jlc , and jld  by 

minimizing E~ .   
 
Since a time-variant ANN at any instantaneous moment is equivalent to a time-invariant ANN, one can follow 
the approach developed by Huang et al. (2003) to estimate the modal parameters at that moment from the
known connective weights )(twij and )(tvij . Accordingly, this work uses the following function for the
transfer functions g and h in Eqn. 2.1, 
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3. NUMERICAL VERIFICATION 
 
Processing numerical simulation responses was carried out to demonstrate the feasibility of the proposed
procedure. The Runge-Kutta method with time increment ( tΔ ) equal to 0.001 second was applied to determine 
the dynamic responses of a three-story shear building (see Fig.2) subjected to base excitation. The stiffness and 
damping at the second floor of the shear building is assumed to be time dependent. Figure 3 shows the time
histories of displacement responses at each floor and input acceleration.  
 
In constructing an ANN from the dynamic responses and input accelerations, the nodes in input layer 
are ),1(1 −ty  ),2(1 −ty  ),1(2 −ty  ),2(2 −ty  ),1(3 −ty ),2(3 −ty ),(tf ),1( −tf  and )2( −tf , where 

)( jtf −  and )( jtyk − are the input acceleration and the displacement response of the kth degree of freedom 
relative to the base at the (t-j) time step, respectively. The nodes in output layer are ),(1 ty  ),(2 ty  and )(3 ty . 
Notably, the values for nodes in the input layer are normalized to the range between 1 and -1.  
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Figure 4 demonstrates the effects of the weighting function (Eqn. 2.5) and the number of shape functions (L) for 
representing the connective weights and thresholds on identifying instantaneous modal parameters. The results 
shown in Fig. 4 were obtained by using md =30 seconds for the weighting function given in Eqn 2.5. It is 
observed that mean values ( μ ) of the relative errors in identifying instantaneous natural frequencies ( nf ) and 
modal damping ratios (ξ ) generally decrease with the increase of L. When the number of shape functions is 
sufficiently large, the identified instantaneous modal parameters are not considerably affected by the values of c
in the chosen weighting function. The same trend is found for the mean absolute error (MAE) between the output 
predicted by the trained ANN and the measured displacement responses. Hence, one can use MAE as an index for 
constructing a proper ANN from the measured data.    
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 Figure 3 Time histories of responses and input       Figure 4 Identified results varying with L and c 
 

Figure 5 depicts the compassion of the identified instantaneous modal parameters with the true values. The
present results were obtained by using L=15 and c=0.2. The following index e (Trifunac, 1971) was applied to 
show the agreement between identified instantaneous modal shapes and true ones, 

 ))()(( **
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where iRφ  and iCφ  represent the ith complex mode shapes for the reference state and the current state to which 
it is to be compared, respectively; the complex constant, a, is obtained by minimizing 

*)()( iCiR
T

iCiR aa φφφφ −− ; * denotes the complex conjugate. When the two modal shapes are highly 
correlated, e is close to zero. The feasibility of the proposed approach is validated by the excellent agreement 
between the identified instantaneous modal parameters and true ones shown in Fig. 5.  
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Figure 5 Comparison of identified results with true values 

 
 
4. APPLICATIONS TO EXPERIMENTAL RESPONSES 
 
Shaking table tests are often carried out in a laboratory to examine the behaviors of structures in earthquakes.
The Center for Research on Earthquake Engineering (NCREE) in Taiwan undertook a series of shaking table
tests on a 3 m long, 2 m wide, and 6.5 m high steel frame to generate a set of earthquake response data of the
five-story steel frame (Yeh et al., 1991). The mass of each floor with piled lead blocks was approximately 3664 
kg. The displacement, velocity, and acceleration response histories of each floor were measured with a 
sampling rate of 1000 Hz during the shaking table tests. Additionally, some strain gauges were installed in one
of the columns and near the first floor.  

Yeh et al. (1991) reported that the frame responded linearly when it subjected to 10% of the strength of the 
Kobe earthquake, and the steel columns near the first floor yielded when the frame subjected to 60% of the 
strength of the Kobe earthquake. Measured strains shown in Fig. 6 evidence the observations. There have been 
residual strains since t was around 2 seconds when the frame was subjected to 60% of the Kobe earthquake.
Because of the symmetry of the steel frame, only the displacement responses and inputs in the long span 
direction were processed to find the instantaneous modal parameters. Figure 6 also depicts the displacement
responses of the third and fifth floors in the long-span direction, subjected to 60% of the Kobe earthquake.  

     

    
 

Figure 6 Input and response histories for 60% Kobe earthquake input. 
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Figure 7 Instantaneous modal parameters obtained from experimental data 
 

The measured base acceleration and displacement responses of each floor relative to the base were used to train 
an ANN. The instantaneous modal parameters shown in Fig. 7 were identified for the steel frame subjected to
10% and 60% of the Kobe earthquake. In computing e, the mode shapes for the reference state were the mode 
shapes determined by using a time invariant ANN to process the dynamic responses of the frame under 10% of 
the Kobe earthquake (Huang et al, 2003).  
 
As expected, small variations of instantaneous natural frequencies with time are observed in Fig. 7 for the 
frame under 10% of the Kobe earthquake because no damage occurred to the frame. The identified 
instantaneous modal parameters for different modes, especially for natural frequencies and mode shapes, are 
much consistent with those obtained by Huang et al. (2003). 

Comparison of the instantaneous modal parameters identified for 60% Kobe input with those for 10% Kobe 
input reveals that  (t)nf identified for 60% Kobe input are generally smaller than those identified for 10% 
Kobe input, while )(tξ  and e values show the opposite trend. These observations obey the well-known 
physical phenomenon that damage in a structure induces the decrease of natural frequency and increase of
damping ratio for the structure. Furthermore, significant decrease in  (t)nf is observed at t=2 seconds around, 
especially for the first mode showing more than 5% decrease in  (t)nf , which indicates possible damage 
initiated in the frame at that moment. This finding is consistent with what is observed from the measured strains
in Fig.6.  

5. CONCLUDING REMARKS 
 
This work has presented a procedure to identify the instantaneous modal parameters of a time varying or 
nonlinear structure from its dynamic responses, using an ANN model. To catch the time varying feature of the
structure, the connective weights and thresholds of an ANN are assumed to be functions of time and expanded 
by a set of shape functions established by a moving least-squares approach. The dynamic displacement 
responses and input forces of the structural system are used to train a proper ANN. Then, the instantaneous 
modal parameters of the structural system are directly estimated from the connective weights of the trained 
ANN. The feasibility of the proposed procedure has been demonstrated by processing numerically simulated 
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dynamic responses of a three-story shear building whose stiffness and damping at the second floor are time 
dependent.  
 
To demonstrate the applicability of the present approach to real data, the present approach has also been applied 
to process the displacement responses of a five-story steel frame, subjected to 10% and 60% of the Kobe 
earthquake, in shaking table tests. The frame was first shaken under 10% Kobe input, then subjected to a large
earthquake (60% Kobe) input and yielded. The identified instantaneous modal parameters are consistent to the 
observed physical phenomena in the tests. The identified instantaneous modal parameters indeed indicate
possible damage in the structure and when the damage initiated. To identify where the damage occurs is the 
next study subject in future. 
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