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ABSTRACT : 
Reinforced concrete (RC) columns can be subjected to torsional moments in addition to flexural, axial and shear 
forces during earthquake excitations.  Therefore, it is essential to develop models to predict their behavior under 
combined loadings. The objective of this study is to propose a rational model capable of predicting the entire 
loading history of circular RC columns under combined loading.  As an initial step of this study, an analytical 
model for RC columns subjected to torsion and axial force is developed.  The existing rotating-angle softened truss 
model (RA-STM) was chosen as a basis and it was modified to account for tension-stiffening effect and biaxial 
constitutive laws of R C in the proposed model.  This addition makes it possible to estimate the thickness of shear 
flow zone.  As a result, it is possible to predict the torque-twist curve of circular RC column even after the post-
peak behavior. The performance of proposed method is validated with the test results of a half-scale circular RC 
column under torsion and axial compression.  The proposed model can be used as a basis to predict the behavior of 
circular RC columns under combined loadings including shear and flexure.  
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1. INTRODUCTION 
The behavior of a reinforced concrete (RC) member under shear and torsion can be predicted by the three most 
well-known truss models, the modified compression field theory (MCFT) (Vecchio and Collins 1986), the rotating-
angle softened truss model (RA-STM) (Hsu 1988), the fixed-angle softened truss model (FA-STM) (Pang and Hsu 
1996; Hsu and Zhang 1997).  These theories commonly assume RC member as assemblies of two-dimensional 
membrane elements, also called panels, subjected to in-plane shear and normal stresses. Therefore, the behavior of 
a RC member under shear and torsion can be predicted via the behavior of membrane elements. The most critical 
issue in assembling the membrane elements to a torsional RC member is in proper estimation of the thickness of 
shear flow zone, td, during the load-deformation response.  The estimation of td in a torsional rectangular member is 
relatively well established than in a non-rectangular section member, especially in a member like bridge column 
with circular cross section.  Although there is a considerable debate over the estimation of td in STM and MCFT 
with respect to  spalling effect, they both tend to agree that td in a torsional rectangular member is strongly affected 
by out-of-plane warping, which causes bending in the concrete struts.  Also, there is no established theory for the 
out-of-plane warping effect in a torsional circular member.  However, it is physically apparent that out-of-plane 
warping effect on a circular section member is considerably smaller than that on a rectangular section member.  In 
other words, the concrete struts in a torsional circular member are predominated by the in-plane principal 
compression and tension due to the circulatory shear.  In spite of this apparent physical phenomenon, most of 
design codes or specifications adopt the similar concept of a torsional rectangular member suggested by STM and 
MCFT when estimating td in a torsional circular member at the ultimate state.  Thus, this discrepancy should be 
amended based on a basic physical phenomenon in a torsional circular section.  Although many aspects of MCFT 
and STM are similar, their treatment of the shear flow zone and the stress-strain relationship for concrete in 
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compression differ significantly.  To predict the overall behavior of a torsional circular member including the 
spalling effect, the STM is a more suitable model than the MCFT not only in the case of the proper estimation of td, 
but also in other mechanical aspects (Hsu 1998).  The softening truss model (STM) proposed by Hsu (Hsu 1985), 
which was based on the rotating angle concept, has improved remarkably during last two decades on two main 
streams.  One is in improvement of material laws for concrete and steel (Belarbi and Hsu 1994, 1995; Hsu and 
Zhang 1996; Hsu and Zhu 2001), and the other is in improvement of STM itself (Pang and Hsu 1996; Hsu and 
Zhang 1997; Greene 2006).  
 
Although there have been significant improvement of truss models themselves, all of these models have difficulties 
predicting the post-peak behavior which is very important in the seismic design. This is caused due to the neglect of 
Poisson effect in RC elements under biaxial stress field. In other words, material laws for concrete and steel used in 
truss models should be derived from the biaxial stress and strain conditions. However, all the models developed so 
far have adopted the material laws derived from uniaxial conditions. Sengupta and Belarbi (2001) studied this 
problem by the estimation of proper Poisson’s ratios by testing 18 panels under biaxial loading. However, they 
could not define the Poisson’s ratios accurately due to the limitation of testing facility. More sophisticated 
experimental investigation about the Poisson effect in RC membrane elements was carried out by Hsu and Zhu 
(2002) using a unique panel testing facility. They finally suggested the Hsu/Zhu ratios through test results of twelve 
full-size RC panels considering four variables and developed a new model called softened-membrane-model 
(SMM), which can predict the entire behavioral history including both the pre-peak and post-peak behavior. For 
this study, RA-STM is chosen as a proper model to analyze the RC circular columns under torsion and axial force. 
A generalized algorithm incorporating the proper estimation of td, the tension stiffening effect and Poisson effect is 
introduced and validated by comparing with test results. This paper presents a rational and general method based on 
RA-STM to analyze the entire behavior of a circular RC column under pure torsion with or without axial 
compression from existing experimental results. Particularly, exact value of td can be calculated through the 
proposed algorithm and will be a valuable piece of information for understanding the mechanical behavior of 
circular RC member under pure torsion. Moreover, this method can also be applicable to a rectangular RC member 
under pure torsion. This flexibility makes it possible to use the proposed algorithm as a verification tool for both 
experimental and analytical results of RC members with any cross section under pure torsion. 
 
2. GOVERNING EQUATIONS AND MODIFICATIONS OF RA-STM 
2.1 Governing Equations 
When applying the RA-STM to a rectangular section subjected to a torque, all the following equations satisfies 
Navier’s principle, which comprise of four equilibrium equations, seven compatibility equations, and five 
constitutive laws for concrete and steel. These equations are given in a paper by Hsu (1988) with all pertaining 
figures and are not repeated here due to space limitation. In the original RA-STM, concrete tensile stress, σr, is 
considered as zero. This assumption results in significant overestimation of deformation due to the neglect of 
tension stiffening effect. The effect of tension stiffening can be taken into account by incorporating the average 
tensile stress-strain relationship of concrete in the analysis.  
 
2.1.1 Equilibrium equations  
The two-dimensional equilibrium condition relates the average internal stresses in the concrete ( dσ  and rσ ) and in 
the reinforcement ( lf  and tf ) to the average applied stresses ( lσ , tσ  and ltτ ) with respect to the angle of inclination 
of the d-axis to the l-axis (α). 
 2 2cos sinl d r l lfσ = σ α +σ α +ρ   (2.1) 

 2 2sin cost d r t tfσ = σ α +σ α +ρ   (2.2) 
 ( ) sin coslt d rτ = −σ +σ α α                        (2.3) 

 0(2 )lt dT A t= τ  (2.4) 
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2.1.2 Compatibility equations  
The 2-D compatibility condition expresses the relationship between the average strains in different coordinate 
systems, namely: the l-t-coordinate system ( lε , tε  and ltγ ) and the d-r principal axes ( dε , rε ). Additional equations 
are needed to solve the torsional problem accounting for the strain and stress distributions in concrete struts affected 
by the out-of-plane warping effects. The curvature of the concrete struts (ψ) can be related by geometry to the angle 
of twist (θ), α, the thickness of shear flow zone (td) and the outer face strain of the concrete strut (εds). 

 2 2cos sinl d rε = ε α + ε α   (2.5) 

 2 2sin cost d rε = ε α + ε α  (2.6) 

 ( )sin cos
2
lt

d r
γ

= −ε + ε α α   (2.7) 

 0

02 lt
p
A

θ = γ   (2.8) 

 sin 2ψ = θ α  (2.9) 
 /d dst = ε ψ   (2.10) 
 / 2d dsε = ε   (2.11) 

2.1.3 Constitutive laws 
 '

1 ( , )d c dk f fσ = ζ ⇒ ε ζ   (2.12) 

 1 ( , )dsk f= ε ζ   (2.13) 

 ( , )d rfζ= ε ε   (2.14) 

 ( )l lf f= ε   (2.15) 

 ( )t tf f= ε   (2.16) 

 0 ( )r r rfσ = ⇒ ε  (2.17) 
Table 2.1  List of equations and variables in the proposed method 

Category 

Variables Equations 
Stresses 

or 
force 

Strains 
Or 

Geometry 
Material Equilibrium Compatibility Material 

(Constitutive)

For 
Shear 

σl εl ζ (2.1) (2.5) (2.14) 
σt εt  (2.2) (2.6)  
τlt γlt  (2.3) (2.7)  
σd εd    (2.12) 
σr εr    (2.17) 
fl α    (2.15) 
ft     (2.16) 

Additional 
For 

torsion 

T θ (k1) (2.4) (2.8) (2.13) 
 (ψ)   (2.9)  
 td   (2.10)  
 (εds)   (2.11)  

Number 8(7) 8(10) 1(2) 4(4) 4(7) 5(5) 
Total 17(19) 13(16) 

     * σl = σt = 0 (pure torsion),  σl = c (with axial force) 
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2.2 Variables and Equations 
All the variables and equations related to out-of-plane warping effect on flat concrete wall causing bending in 
concrete struts are eliminated from the original RA-STM method in order to remove the ambiguous estimation of td 
in a circular shaped concrete wall as shown in Table 2.1. That is, equations related with Bredt’s theory which are 
Eqn. (2.4) and (2.8) are only considered in the proposed method. The elimination of variables and equations 
increases the number of unknowns between the equations and variables and makes them unbalance. Therefore, it is 
necessary to resolve this problem by introducing new variables and equations. Thus, the terms related with concrete 
properties in tension are augmented in the proposed method not only to resolve the unbalance between the number 
of equations and variables but also to consider the tension stiffening effect. From the mechanical point of view, this 
is a reasonable assumption only if Navier’s principle is satisfied. As a result, the number of unknown variables 
reduced from 19 to 17, and the number of governing equations also reduced from 16 to 13. That is, the number of 
differences between unknown variables and governing equations increases by one more. In the original RA-STM 
method, these discrepancies between unknown variables and equations were iteratively resolved by taking apparent 
two constant values, σl = σt= 0, and an arbitrary constant, εd, for three unknown variables as shown in Table 2.2. 
Adjustment on differences in the proposed method is achieved from two apparent variables, σl = σt= 0, like in the 
original RA-STM method, and two exact variables, T & θ, obtained from experiment. Therefore, the proposed 
method results in an exact solution. 
 

Table 2.2  Comparison with the original RA-STM and the proposed method 

Model No. of 
Variables 

No. of 
Equations Differences Given Solving Method

Original 
RA-STM 19 16 3 σt=σl=0 (or σl =cont.) 

εd = variable Iterative 

Proposed 
Method 17 13 4 σt=σl=0 (or σl =cont.) 

Experimental T&θ Exact Solution 

 
2.3 Thickness of Shear Flow Zone 
The thickness of shear flow zone, td, can be expressed as an equation of fourth degree in terms of known values, εd, 
εr, T and θ and throughout the combination of Eqn. 2.3, 2.4, 2.7 and 2.8.  

 3 8( ) 0d r
d d

d r

TD t t
⎛ ⎞−ε + ε

− − =⎜ ⎟πθ −σ +σ⎝ ⎠
  (2.18) 

where D = Diameter of circular column 
Another expression for td can be derived by substituting the steel ratios, ρl and ρt into Eqn. 2.1 and 2.2. The 
resulting equation gives 

 
/ /s l o t t

d
l r d r

A f p A f st +
=
σ +σ −σ −σ

  (2.19) 

where 

 s
l

o d

A
p t

ρ = , t
t

d

A
st

ρ =   (2.20) 

Both of equations are used as a necessary condition during the calculation. As a result, exact solutions of td can be 
obtained from Eqn. 2.18, and then proved through Eqn. 2.19. By using this value, additional variables needed for 
torsion problem, A0 and p0, which are cross-sectional area and perimeter bounded by the centerline of the shear 
flow zone respectively are calculated according to Eqn. 2.21 and 2.22. 

 2
0

1
2c c d dA A p t t= − +                                       (2.21) 

 0 4c dp p t= −   (2.22) 
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3. CONSTITUTIVE RELATIONSHIPS OF MATERIALS 
3.1 Constitutive Relationships under Biaxial Loading 
The stress-strain relationships of concrete and steel are based on the set of biaxial strains.  The set of biaxial stresses 
cannot be calculated directly from the biaxial strains using the biaxial constitutive relationships.  Because these 
relationships depend on the Poisson effect and cannot be uniquely established from test. Therefore, it is necessary 
to connect the biaxial stresses to biaxial strains ( 1ε , 2ε ) containing the set of uniaxial strains ( 1ε , 2ε ). Hsu and Zhu 
(2002) derived these relations from their panel tests and suggested following equations.  

 12
1 1 2 1 12 2

12 21 12 21

1
1 1

ν
ε = ε + ε = ε + ν ε

−ν ν −ν ν
  (3.1) 

 21
2 1 2 2

12 21 12 21

1
1 1

ν
ε = ε + ε = ε

−ν ν −ν ν
  (3.2) 

 2 2
2 1 12 2cos ( )sinlε = ε α + ε + ν ε α   (3.3) 

 2 2
2 1 12 2sin ( )costε = ε α + ε + ν ε α   (3.4) 

where 
 12 0.2 850 sfν = + ε , sf yε ≤ ε   (3.5a) 

 12 1.9ν = ,   sf yε > ε   (3.5b) 

 21 0ν =   (3.6) 
 
3.2 Constitutive Relationships under Uniaxial Loading 
The uniaxial constitutive relationships of the concrete and steel bars are given below, with the emphasis on 
improvements. The relationship between dσ and dε is assumed to be parabolic. The constant 4 in the descending-
branch of equation Eqn. (3.7b) replaces the old constant 2 (Pang and Hsu 1996). This revision is intended to take 
care of a long plateau after the peak-point that was observed in the strain-controlled tests. 

 
2

0 0

' 2 d d
d cf

⎡ ⎤⎛ ⎞ ⎛ ⎞ε ε
⎢ ⎥σ = ζ −⎜ ⎟ ⎜ ⎟ζε ζε⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

;  when  
0

1d⎛ ⎞ε
≤⎜ ⎟ζε⎝ ⎠

 (3.7a) 

 
2

0/ 1' 1
4 / 1

d
d cf

⎡ ⎤⎛ ε ζε − ⎞
σ = ζ −⎢ ⎥⎜ ⎟ζ −⎝ ⎠⎢ ⎥⎣ ⎦

; when 
0

1d⎛ ⎞ε
≥⎜ ⎟ζε⎝ ⎠

  (3.7b) 

 
5.8 1 0.9
'( ) 1 400c rf Mpa

ζ = ≤
+ ε

  (3.8) 

To account for the tension stiffening effect, an average tensile stress-strain relationship of concrete proposed by 
Greene (2006) was chosen as shown in Eqn 3.9(a) and (b). 
 r c rEσ = ε ;   when  r crε ≤ ε          (3.9a) 

 379.6( )r cr
r crf e− ε −εσ =  ; when   r crε > ε          (3.9b) 

The relationship of sf and sε is expressed by a bilinear model.  In Eqn. (3.10), l replaces s in the subscripts of the 
symbols for longitudinal steel, and t replaces s in the subscripts of the symbols for transverse steel.  
 s s sf E= ε ; when s nε ≤ ε         (3.10a) 

 [(0.91 2 ) (0.02 0.25 ) ]s
s y

y

f f B B ε
= − + +

ε
  when  s nε > ε          (3.10b) 

where 
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   (0.93 2 )n y Bε = ε − ,  
1.5

1 cr

y

fB
f

⎛ ⎞
= ⎜ ⎟⎜ ⎟ρ ⎝ ⎠

 

 
4. MODIFIED ALGOLITHM AND VALIDATION 
4.1 Method of Solution 
The following algorithm is used to solve the system of governing equations for a specific loading point on the 
whole toque-twist curve.  

1. Given T & θ from experimental data 
2. Assume td 
3. Assume εr 
4. Assume εd 
5. Calculate A0, p0, ρt, ρl  from Eqn. (2.21), (2.22) and (2.20) 
6. Calculate γlt  from Eqn. (2.8) 
7. Calculate α  from Eqn. (2.7) 
8. Calculate εl , εt  from Eqn. (2.5) and (2.6) 
9. Calculate υ12  from Eqn. (3.5) 
10. Calculate dε , rε , σd and σr  from Eqn. (3.1),(3.2),(3.7) and (3.9) 

11. Calculate lε , tε , fl , ft  from Eqn (3.3),(3.4) and (3.10) 
12. Is σl close  from Eqn. (2.1)?  Go to step 4 
13. Is σt close from Eqn. (2.2)?  Go to step 3  
14. Is td close from Eqn. (2.18)?  Go to step 2 
15. Calculate τlt, γlt, T, θ  from Eqn. (2.3), (2.7), (2.4) and (2.8) 
16. Check the given and calculated T, θ and td from Eqn. (2.19) 

 
4.2 Calculated Results and Validation 
Testing of half-scale circular RC column under torsion and axial force was carried out by Belarbi et al., (2008). The 
test results from this study were used for the calculation and validation of the proposed method.  The torque versus 
twist hysteresis curve and the envelope under positive cycle of loading is shown in Figure 2 with the calculated 
points.  Calculation using the proposed method was carried out based on this information and the results of the 
calculation are summarized in Table 4.1. Uni-axial and biaxial strains of transverse and longitudinal reinforcement 
calculated from the proposed method are compared with experimental strains located at the middle of length 
column not affected by boundary condition. The behavior of the column is predominated by the transverse 
reinforcement under pure torsion due to relatively lower ρt than ρl. This makes transverse reinforcement to yield 
before the peak-point (at which concrete reaches its peak value) while longitudinal reinforcement yields thereafter. 
Hus/Zhu’s Poisson ratios are also determined according to the behavior of the transverse steel. Experimental strains 
in transverse reinforcement differ from the proposed method depending on their location near the crack as shown in 
Figure 3(a). Two of them decrease slightly with respect to torque after the peak point with the small increase of 
strain, while the other decreases with large increase of strain. However, all of experimental and analytical curves 
show that they yield before the peak point.  
 
The analytical results were in reasonable agreement with the experimental ones using the adopted average strain 
concept. Even after yielding of spiral, experimental and calculated strain values slightly increase with torque and 
this is due to fact that bars are stiffened by surrounded concrete until the peak point. It is clear that use of average 
stress-strain concept for steel adopted in the proposed method is effective from this point of view. After the peak 
point, all curves start to decrease with respect to torque for maintaining the equilibrium condition. Both of uni- and 
bi-axial strain curves increase after the peak point, because they already exceed the yielding point. It is also 
apparent that biaxial strain is higher than uniaxial strain due to the inclusion of Poisson’s effect. Experimental strain 
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values of longitudinal reinforcement also show difference in behavior compared to analytical prediction as observed 
in strains of transverse reinforcement shown Figure 3(b). The calculated uniaxial strain curves in longitudinal steel 
show a good agreement with the experimental results in terms of strain values. However, predictions of strain using 
the proposed method show a difference in trend as observed in transverse steel. After the peak point, biaxial strain 
curve significantly increases in terms of strain value, while uniaxial strain curves decreases, because the 
longitudinal steel has not yielded even after the peak point. As a result, longitudinal bar takes most part of internal 
forces after the peak point. Adoption of Poisson’s effect in the proposed method can provide a rational estimation 
after the peak point. 
 

Table 4.1  Example of Iteration and Calculated results by  the proposed method  
STEP 1 2 3 4 5 6 7 
T 136 181 203 209 264 278 243 

θ 0.0000267 0.0000527 0.0001611 0.0002021 0.0004426 0.0011469 0.0020376
εd -0.00013 -0.00016 -0.00022 -0.00026 -0.00041 -0.00107 -0.00306
εr 0.000145 0.000361 0.001382 0.001805 0.004175 0.011834 0.018348
td 14.95 18.73 19.60 17.76 18.30 20.46 21.66 

εt 0.000040 0.000161 0.000816 0.001083 0.002703 0.008929 0.012724
εl -0.000027 0.000038 0.000343 0.000464 0.001060 0.001831 0.002559
υ12 0.23 0.34 0.89 1.12 1.90 1.90 1.90 

tε  0.000021 0.000128 0.000688 0.000895 0.002171 0.007347 0.008431

lε  -0.000039 0.000017 0.000273 0.000362 0.000809 0.001372 0.001030

rε  0.000114 0.000306 0.001183 0.001516 0.003392 0.009793 0.012525

ζ 0.88 0.85 0.74 0.71 0.59 0.41 0.37 

σd -4.40 -5.30 -7.08 -8.10 -11.70 -13.96 -11.35 

σr 2.62 2.91 2.09 1.84 0.90 0.08 0.03 

lf  -8.03 3.52 56.45 74.92 167.15 283.51 212.81 

tf  4.26 26.40 142.18 184.90 365.19 400.37 407.01 

α 38.04 38.16 36.42 36.27 34.51 28.32 30.83 

γlt 0.000270 0.000508 0.001532 0.001969 0.004283 0.010782 0.018846
θ 0.000027 0.000053 0.000161 0.000202 0.000443 0.001147 0.002038

T 136 181 203 209 264 278 243 
 

 
Figure 2 Torque-twist response 
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Figure 4  Torque versus uni-axial and biaxial strains in reinforcement 
5. CONCLUSIONS 
An analytical model to predict the behavior of circular RC column subjected to torsion and axial force was 
proposed. The proposed model not only includes the tension stiffening effect of concrete to provide a continuous 
prediction before and after cracking but also the Poisson effect.  This makes it possible to predict the behavior after 
post-peak without any difficulties that are associated with not satisfying the equilibrium conditions at the peak-
point. In addition, the thickness of shear flow zone, td, is properly estimated by using a rational equilibrium 
equation.  The estimation method for td is totally different between the rectangular and circular section due to out-
of-plane warping effect to concrete struts.  This particular feature of the proposed model will play role not only as a 
good basis for the further development of analytical model for the circular RC columns under combined loading but 
also as a verification tool for a rectangular member under pure torsion. 
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