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ABSTRACT: 

Buckling-restrained braces (BRBs) have recently become popular for use in the primary 
lateral-force-resisting systems of structures located in high seismic regions of the United States. A 
BRB is a steel brace that does not buckle in compression but instead yields in both tension and 
compression. While testing has shown that BRBs possess high ductility capacity, no generally 
accepted method yet exists to predict the cumulative plastic ductility (CPD) capacity of BRBs, where 
capacity is defined as deformation undergone before fatigue fracture of the brace. To address this lack 
of knowledge, this study investigated ductility capacity modeling of BRBs. A database of 76 BRB 
tests was compiled, and parameters from the test database were considered as potential predictive 
parameters in a CPD capacity model for BRBs. Two types of capacity models were considered in this 
research: end-capacity models, which predict a static total CPD capacity and remaining capacity 
models, which predict available (or remaining) CPD capacity after a given deformation history is 
imposed. The maximum likelihood estimation method was used to calibrate the capacity model 
parameters to maximize the probabilities that predicted values match test results, providing an 
unbiased model that relates predictive parameters to CPD capacity. Results show that the 
end-capacity formulation has limitations and may lead to results that contradict behavior, whereas the 
remaining capacity formulation is more intuitive and moderately precise. 

KEYWORDS: Ductility capacity, buckling-restrained braces, maximum likelihood estimation 
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1. INTRODUCTION 
 
Buckling-restrained braces (BRBs) have recently become popular for use in the primary lateral-force-resisting 
systems of structures located in high seismic regions of the United States. A BRB is a steel brace that does not 
buckle in compression but instead yields in both tension and compression. Although BRB cumulative ductility 
demands under seismic excitation can be reasonably estimated from nonlinear dynamic analysis (e.g. [1]), no 
generally accepted method exists for predicting the cumulative plastic ductility (CPD) capacity of BRBs, where 
CPD capacity is defined by the cumulative plastic deformation sustained before fracture of the steel core. In 
addition, CPD capacity has been shown to be dependent on loading history. Carden [2] and Fahnestock [1] have 
observed that braces which undergo large maximum deformations exhibit lower CPD capacity than those braces 
which undergo relatively smaller maximum deformations. Furthermore, other important parameters affecting 
capacity have not been clearly identified yet. 
 
As one of the few CPD capacity models available, Takeuchi et al. [3] developed a deterministic fatigue model. 
This model accounts for the effect of loading history on BRB CPD capacity by decomposing the imposed brace 
deformations into skeleton and Bauschinger parts as described by Benavent-Climent [4]. By contrast to the 
deterministic approach by Takeuchi et al., this research effort developed probabilistic capacity models. In 
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addition, unlike the models by Takeuchi et al., which require knowledge of the force-deformation histories of 
BRBs, the models described in this paper require knowledge of only the BRB imposed deformation histories. 
 
Initially, a database of 76 BRB tests was compiled. Data analysis was performed using this database to extract 
potential predictive parameters for the CPD capacity models. Using the predictive parameters, the maximum 
likelihood estimation (MLE) method was employed to construct models that predict the CPD capacity of BRBs. 
Two types of capacity models were considered in this research: end-capacity models, which predict a static total 
CPD capacity and remaining capacity models, which predict available (or remaining) CPD capacity after a 
given deformation history is imposed. Results and conclusions for each model type are discussed.  
 
 
2. TEST DATABASE 
 
A BRB test database was compiled through literature review of brace tests performed by researchers from 
around the world, with the majority of testing performed in the U.S. and Japan (see references in [5]). Of the 76 
specimens in the database, 34 failed due to fracture during testing, and 42 did not fail. For each specimen, the 
test database contains brace geometrical properties (core shape, core area, and core length), the steel yield 
strength, and the imposed deformation history. The imposed deformation history is either a regular cyclic 
history (67 specimens) or simulated seismic loading (9 specimens). In general, the test database does not contain 
brace axial force data. 
 
 
3. PREDICTIVE PARAMETERS 
 
In order to evaluate the factors affecting BRB CPD capacity and to produce the best BRB CPD capacity models, 
a wide variety of predictive parameters were investigated. The predictive parameters used in this research 
(denoted by h) can be divided into three groups: (1) brace geometric properties, (2) brace material properties, 
and (3) descriptors of the imposed deformation history.  
 

Table 3.1 Predictive Parameters 
Brace Geometric 

Properties 
Brace Material 

Properties Deformation Descriptors 

max1 )/( cc AAh =  ych ε=3  th )( max5 μ=  
PE Distribution: 

PEPEPEPENh υσμ=− ,,,107  

max2 )/( cc LLh =  yu FFh /4 =  ch )( max6 μ=  
RF Distribution: 

RFRFRFRFNh υσμ=− ,,,1411  
 
Table 3.1 defines all the predictive parameters, and the variables are further defined as follows: cA is the cross 

sectional area of the BRB core; max)( cA is the largest core cross sectional area of all BRBs in the test database; 

cL  is the length of the yielding core region of the BRB; max)( cL is the maximum core length of all BRBs in 
the test database; ycε  is the yield strain of the BRB core ; uF  is the ultimate tensile strength of the BRB core 

(from coupon tests); and yF  is the yield stress of the BRB core (from coupon tests); t)( maxμ  is the maximum 

tensile ductility demand in the deformation history; and c)( maxμ  is the maximum compressive ductility 
demand in the deformation history. maxμ is defined as ,)max{( max tμ  },)( max cμ  and a ductility demand μ  
is defined as ,/ ycc ΔΔ  where cΔ  is the instantaneous deformation of the BRB core (measured across cL ), 

and ycΔ  is the core deformation at incipient yielding of the core. Cumulative plastic ductility (CPD) demand is 

the summation of all plastic core deformation (∑Δ p ) occurring up to a specific deformation increment, normalized 
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by the yield deformation, i.e. 
yc

p
c Δ

Δ
=μ ∑ . Both cA  and cL  are normalized by database maximum values 

since unit-less predictive parameters are desirable during the model construction.  
 
The “PE distribution” terms are related to the plastic excursion (PE) distribution: count ),( PEN  mean value 

),( PEμ  standard deviation ),( PEσ  and skewness ).( PEυ  A single PE is defined as the sum of all 
deformation (expressed as ductility) occurring consecutively in the plastic domain. A PE begins at the yield 
point and ends when unloading commences. Many such single PEs occur during a typical load history, and the 
aggregation of these single PEs forms the PE distribution.  
 
The “RF distribution” terms are related to the Rainflow (RF) distribution: count ),( RFN  mean value ),( RFμ  
standard deviation ),( RFσ  and skewness ).( RFυ  The RF distribution is a distribution of cycle amplitudes 
(plastic deformation only) calculated from the deformation history using the Rainflow Method [6]. This method 
converts an irregular deformation history into a cyclic deformation history composed of full and half cycles.  
 
The CPD capacity of the BRB test specimens as well as the deformation descriptor predictive parameters were 
determined by assuming that the steel BRB core behaves in an elastic-perfectly plastic manner when subjected 
to the imposed deformation history. The CPD capacity was calculated by summing all plastic deformations 
throughout the imposed deformation history to the point of failure of the BRB.  
 
 
4. CAPACITY MODELING OVERVIEW 
 
To study the CPD capacity of BRBs in greater depth, the MLE method [7] was employed to construct capacity 
models. In the MLE method, model parameters were calibrated to maximize the probabilities that the model 
would predict the observed data. The procedure for developing BRB CPD capacity models consisted of the 
following four steps: (1) model form definition, (2) model parameter calibration, (3) model reduction, and (4) 
error analysis. These steps are discussed in this section in detail in reference to end-capacity model formulations. 
Remaining capacity models are discussed in a subsequent section.  
 
The following form is chosen for the end-capacity models 
 

                               σε+γ= ),( hθC                                   (4.1) 
 
where C is the predicted CPD end-capacity; ),( hθγ  is the model form; θ  is a vector of model parameters 
(used to fit the model to test data); h is a vector of predictive parameters (defined in the previous section); σ  is 
the model error standard deviation; and ε  is the standard normal random variable (zero mean and unit 
variance). Together, the quantity σε  represents the error in the model.  
 
The likelihood function was used to fit the model to test data, where the likelihood function is proportional to 
the conditional probability that the capacity model agrees with the test results. The residual (the difference 
between the predicted capacity and measured values) is defined as 
 

                           σε=γ−= ),( hθmeasureCr             (4.2) 
 
where measureC  is the CPD capacity from test results. Thus the likelihood function is given as  
 

   ∏∏ σ>ε×σ=ε∝σ
data failure-nondata failure

)/()/(),( ii rPrPL θ                 (4.3) 



The 14
th 

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
 
                       ∏∏ σ−Φ×σσϕ∝σ

data failure-nondata failure

)/(/)/(),( ii rrL θ              (4.4) 

 
in which )(⋅ϕ  and )(⋅Φ  respectively denote the probability density function and cumulative distribution 
function of the standard normal distribution. The model was fit to test results by varying θ  and σ  such that 
the likelihood function was maximized. This was accomplished through a standard iterative non-linear 
minimization algorithm using MATLAB®.  
 
Following the parameter calibration, model reduction was performed. In this process, predictive parameters in h 
were removed in an iterative fashion such that the number of predictor terms was minimized with model error 
(which is proportional to )σ  maintained at a level judged to be reasonably low. The goal of model reduction 
was to find the simplest model that was still accurate, and the process of model reduction allowed identification 
of the most influential predictive parameters. Following model reduction steps, error analysis was performed.  
 
Error analysis was accomplished in a typical fashion, where the distribution of measurepredict CCZ /=  was 

constructed using all specimens in the test database that failed, where predictC  is the predicted CPD capacity 

from the capacity model, and measureC  is the measured CPD capacity from testing. A mean value of Z is greater 
than 1 because the model is constructed using both failure and non-failure data. The coefficient of variation 
(COV) of Z is an indicator of the precision of a particular model.  
 
 
5 END-CAPACITY MODELS 
 
Through the process of parameter exploration, model creation, and model reduction for the end-capacity models, 
the following conclusions may be stated [5]: 
 
1) A variety of predictive parameters and model forms were explored. Predictive parameters included BRB 

material properties, BRB geometric properties, and parameters which characterize the imposed deformation 
histories. Model forms explored included linear and nonlinear.  

2) Of the parameters investigated, it was found that deformation history predictive parameters were more 
important and contributed more substantially to model accuracy than BRB property parameters. Those 
models without deformation history predictive parameters performed very poorly.  

3) Although the Rainflow deformation history predictive parameters and the plastic excursion predictive 
parameters attempt to characterize the same behavior (size and shape of the imposed plastic deformation 
demand distribution), the Rainflow parameters were found to perform better than the plastic excursion 
parameters.  

4) Overall, no high-fidelity model capable of predicting the end-CPD capacity of BRBs was found.  

5) When using deformation history predictive parameters, the end-capacity model may lead to 
counter-intuitive results that are artifacts of the distribution of the parameters in the test database and are not 
representative of behavior. For example, it is thought that those BRBs subjected to higher ultimate demands, 
i.e. higher maxμ , should have relatively lower CPD capacity. However, some capacity models, as 
formulated in terms of predicting end capacity, indicated that larger ultimate demands cause larger CPD 
capacity. This appeared to occur because those specimens with larger ultimate demands simply tended to be 
tested to higher CPD capacities, but this in general does not mean that higher ultimate demands lead to 
relatively higher CPD capacities. 

6) It is possible to err with the end-capacity formulation, and include in the predictive terms the value that the 
model seeks to predict.  



The 14
th 

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
 
 
6. REMAINING CAPACITY MODELS 
 
In an attempt to overcome the disadvantages of the end-capacity models described above, remaining capacity 
(RC) models were developed. The basic form of the remaining capacity models is given by 
 

∑∏ θ−=−= θ
jji hhUCTCRC i

                (6.1) 
 
where RC  is the remaining capacity; TC  is the total capacity (the capacity of the brace in an undamaged 
state); and UC  is the used capacity (all in terms of CPD). RC varies with the applied deformation history, 
from a value of TC at the beginning of the applied deformation history to a value of 0 when the brace fractures. 
The form of equation 6.1 is a combination of the end-capacity models and a damage evolution-type model. The 
total capacity component, i.e., ∏ θ= i

ihTC , is an end-capacity-type formulation that utilizes only static 
predictive parameters (those that do not change with the imposed deformation). Conversely, the used capacity 
component, i.e., ∑ θ= jjhUC , is a damage-evolution-type model and utilizes deformation history predictive 
parameters (those that vary with the imposed deformation).  
 
The parameters used in the RC models were the same as in the end-capacity models, summarized in Table 3.1. 
Two additional parameters used not described previously are ultμ  and locmaxμ . ultμ  is the ultimate ductility 
capacity, which is assumed to be equal to the value of ductility at the ultimate tensile strain of the steel. This is 
given by ycucult εε=μ / , where ucε  is the ultimate tensile strain of the core, assumed to be 35% for all 

specimens. locmaxμ  is defined as 
endc

c
loc @

@ max
max μ

μμ
=μ , i.e. the value of cμ that occurs at the location of 

maxμ divided by the value of cμ  at the end of the deformation history. Thus locmaxμ  may be thought of as the 
relative location of the maximum ductility demand in the deformation history in terms of CPD. This parameter 
was created to potentially characterize the effects of the location of maximum ductility demands on the CPD 
capacity.  
 
The MLE method, as discussed previously, was used to calibrate the model parameters using the complete 
model form:  
 

σε+θ−=−= ∑∏ θ
jji hhUCTCRC i             (6.2) 

 
As before, the model parameters θ  and σ  were calibrated to maximize the likelihood function, which, for 
the remaining capacity models, is given by 
 

( ) ( )[ ]∏ ∏
= = ⎭

⎬
⎫

⎩
⎨
⎧

=∝σ
specimens incrementsn

l

n

m
mlmeasuremlpredict RCRCPL

1 1
,,

),(θ         (6.3) 

 
in which ( )

mlpredictRC
,

 is the predicted remaining capacity given by equation 6.1 for BRB specimen l at 

deformation increment m. Similarly, ( ) mlmeasureRC ,  is the measured remaining capacity from testing for BRB 
specimen l at deformation increment m, which is given as 
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( ) ( ) ( ) mlcendlcmlmeasureRC ,,, μ−μ=              (6.4) 
 
where ( ) endlc ,μ  is the CPD demand from testing for BRB specimen l at the end of testing, i.e. the total CPD 

demand, and ( ) mlc ,μ  is the CPD demand from testing for BRB specimen l at deformation increment m, i.e. all 
plastic deformation (in terms of ductility), accumulated from the start of the imposed deformation history up to 
point m.  
 
Since the RC  models were fit to test data at various intervals in the deformation histories (and not just at the 
beginning and/or end points), it was difficult to quantify the overall model precision. The metric used to do this 
was the distribution of ( )

endfailurepredictRC
,

, which is the distribution of predicted remaining capacities at the end 

of the imposed deformation histories for failure specimens. The mean of this distribution is denoted by 
RCpredictμ  and measures the model accuracy. The standard deviation of the distribution is denoted by RCpredictσ  

and measures the model precision. Similar metrics could be derived for different points in the deformation 
history, but the distribution at the end of the history is most informative.  
 
Various RC  models were investigated by implementing the terms mentioned above in a variety of 
combinations. Through trial and error, two best models were identified, RC 1 and RC 2. Modeling results are 
presented in Table 6.1 and Table 6.2, which list, for each model, the equation for predicted RC, values of σ , 
model accuracy, and model precision.  
 

Table 6.1 Remaining Capacity Modeling Equations 
Model Equation 

RC 1 

c
c
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u
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c

c
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RC Avg 
cR μ−= 27.102  

 
Table 6.2 Remaining Capacity Modeling Accuracy and Precision 

Model Value of σ  RCpredictμ  RCpredcitσ  
RC 1 193 -30 217 
RC 2 434 243 368 
RC Avg 870 0 891 

 
Figure 6.1 shows the comparison of the predicted remaining capacity versus the measured remaining capacity 
over the entire deformation histories as predicted by model RC2 (the plot for RC 1, though not shown, is 
similar). In the figure, the measured remaining capacity is represented by the mean plus and minus one standard 
deviation envelope of the distribution of measured remaining capacities (for failure specimens only).  
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Figure 6.1 Predicted versus Measured RC Comparison for RC 2 Model 

 
The following conclusions apply to models RC 1 and RC 2: 
 
• For both models, the behavior of the predicted remaining capacity over the deformation history (i.e. the 

shape of the plots) is monotonically decreasing.  

• The majority of the predicted values fall within the measured distribution envelopes for both models.  

• The RC 1 model is more accurate and precise than RC 2, because RCpredictμ  is nearer to 0 for RC 1 than RC 

2, and because RCpredictσ  is smaller for RC 1 than RC 2.  

• RC 2, in general, overestimates remaining capacity, as RCpredictμ  is significantly greater than 0.  

• Both models RC 1 and RC 2 are significantly more precise than the model RC Avg, which is a model based 
on quantifying the average brace remaining capacity and which uses no additional predictor terms. Thus, the 
use of RC models is warranted instead of using just the average brace capacity from tests.  

 
While RC 1 appears to be a better model than RC 2 in all respects, the inclusion of the locmaxμ  term in RC 1 

presents problems. The overall effect of the 9883.0
max

−μ loc  term is that BRBs subjected to seismic loading with 

relatively high early demands (a smaller value of locmaxμ ) are predicted to have larger CPD capacity. This 
conflicts with the observations made by Carden [2] and Fahnestock [1]. To avoid the problems discussed above, 
the RC 2 model was developed without the use of locmaxμ .   
 
 
7 SUMMARY AND CONCLUSIONS 
 
In this research, CPD capacity models for BRBs were created. The approach was empirical, and was based on a 
test database of 76 BRB specimens, of which 34 failed via tensile fracture and 42 did not. Predictive parameters 
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were extracted from the test database to be used as inputs to the capacity models. The maximum likelihood 
estimation method, in which the parameter models are calibrated to maximize the probabilities that the observed 
data will be predicted by the model, were applied to develop probabilistic models that relate predictive 
parameters to BRB CPD capacity. Two types of capacity models were considered in this research: end-capacity 
models, which predict a static total CPD capacity and remaining capacity models, which predict available (or 
remaining) CPD capacity after a given deformation history is imposed. Remaining capacity models proved most 
applicable, and while they may not conform to engineering-level accuracy or precision expectations, they may 
be used in a performance-based engineering framework to predict BRB failure, where the CPD capacity model 
error is taken explicitly into account. Developing both accurate and precise models is challenging when using 
only basic BRB properties and the imposed deformation histories, since the variability in the imposed 
deformation histories (regular cyclic, to irregular cyclic, to simulated seismic) prevents detailed understanding 
of the factors that affect performance. There are three recommended actions to create better BRB CPD capacity 
models: 
 
1) Obtain knowledge about more BRB properties, particularly those related to ductility (such as ultimate stress 

and ultimate strain capacity). 
2) Implement a more uniform testing program, similar to the procedures used to create high-cycle fatigue 

curves, where the imposed deformation histories are similar and systematically planned to study CPD 
capacities at various constant strain ranges (i.e. regular cyclic and simulated seismic loadings should not be 
mixed). 

3) Measure both the force and deformation histories of the BRBs and use the information to build capacity 
models (as in Takeuchi et al. [3]), but using a probabilistic framework as described above.  
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