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ABSTRACT : 

In this paper, the behaviour of T-shaped walls is determined by examining the relative effect of the 

web-flange ratio, the reinforcement percentage and the axial load on curvature through the 

employment extensive moment-curvature analyses. T-shaped walls of different web-flange ratio with 

varying axial load, reinforcement content and distribution within a representative range of values are 

analysed in order to determine the curvature trends for three limit states, i.e. serviceability, yield and 

ultimate. A comprehensive set of equations for yield, serviceability and ultimate curvature is 

proposed, indicating the level of uncertainty for each expression. The proposed expressions, being 

adapted to different levels of precision and accompanied by graphical representation, lead to the 

reliable computation of limit-state curvatures, essential within a displacement-based design approach, 

and can be utilised in the realistic estimation of appropriate ductility factors in the design of T-shaped 

walls. Furthermore, the results regarding the section properties of T-shaped walls, such as the elastic 

stiffness and the moment capacity for opposite directions of loading, offer additional information 

useful in the design of T-shaped walls. 
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1. INTRODUCTION  
 

In current design it is commonly assumed that the stiffness is a fundamental property of a RC section, 

implying that the yield curvature is directly proportional to the yield moment. However, extensive 

analyses on several types of sections, the strength of which was altered by changing the axial load or 

the flexural reinforcement content, have shown that the stiffness and strength vary essentially in 

proportion (Priestley, 1993). Finding that the stiffness and strength are independent for a given 

structural member type and size, it follows that the curvature, and consequently the member 

displacement, is independent and thus an important parameter in the stiffness calculations. However, 

until now the sections examined regarding walls were mostly rectangular, although in reality for both 

structural and architectural purposes walls rarely follow this configuration, exhibiting several shapes. 

One of the most commonly used types of walls is the T-shaped walls, the behaviour of which differs 

significantly from that of rectangular walls in terms of stiffness, strength and ductility capacity, 

strongly depending on the direction of the loading, as will be shown in this work. 
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2. ANALYSES RESULTS  

 

2.1. Considerations in Moment-Curvature Analyses 

In this work, T-shaped RC walls with different ratio of flange width over web length are considered. 

This ratio will be called web-flange ratio henceforth. Moment-curvature analyses were conducted 

(XTRACT, 2004) for all the sections with varying axial load ratio and longitudinal reinforcement 

ratio in order to determine trends in the moment-curvature relationships of the T-shaped walls for 

yield curvature, as well as for the curvatures at serviceability and damage control limit states. 

Specifically, the ratios of flange width over web of the sections analyzed are presented in Table 1. 

The thickness of the web and flange was considered equal to 250mm, with two layers of reinforcing 

confining an inner core. 

 

Table 1 Dimensions of T-shaped walls examined 

Web Length (m) Flange Width (m) ����������	
 

6.0 4.0 3.0 2.0 1.5 1.0 

4.0 4.0     

3.0 4.0     

2.0 4.0     
 

The ratio of longitudinal reinforcement, defined as ρ=As/Ag, took the values of 0.005, 0.010, 0.015 

and 0.020 for the case of uniform distribution of the reinforcement, the advantages of such a 

configuration are advocated by Priestley et al. (2007). Moreover, the case of concentrated 

reinforcement at the ends of the sections was examined. In particular, 0.5% of the reinforcement was 

distributed along the web, while the rest was concentrated at the ends of the web and flange, in such a 

way that the reinforcement at the web end did not exceed 4% of the wall end area. Consequently, the 

ρ ratios considered were 0.010, 0.015 and 0.020. The axial load ratio, i.e. N/f’cAg, varied between 

zero and 0.10.  

 

Finally, as far as the material properties are concerned, the concrete compressive strength is taken 

equal to 30MPa, while the steel yield strength is 450MPa. The effects of steel strain hardening and 

concrete confinement were considered and the confined concrete was differentiated from the 

unconfined. In the analyses conducted, the Mander concrete model (1988) was used. The 

reinforcement is inserted as discrete. It is noted that the doubly-reinforced wall sections are regarded 

well-designed with sufficient confinement that deters the buckling of the compressive rebars.  

 

2.2. Definition of Limit-State Curvatures 

Yield curvature φy was defined as the curvature found by extrapolating the line from the origin of the 

moment-curvature curve through first yield (My, φ΄y) to the nominal strength MN. The first yield 

occurs for the lower of the curvatures corresponding to εs= εy for steel and εc=0.002 for concrete. The 

nominal moment is defined as the one at curvature corresponding either to εs=0.015 or εc=0.004, 

whichever happens first. This latter curvature is in fact the serviceability curvature φs. The values of 

strains for the serviceability curvature correspond to the onset of incipient spalling for concrete, and 

for steel strains that result in residual crack widths greater than 1.0mm. Finally, the damage control or 

ultimate curvature φu is defined as the lower of the curvatures corresponding to εs=0.060 and 

εc=0.018, which are estimates of damage-control limit strains for well-confined concrete and 

well-restrained reinforcement. The limit to confined concrete compression strain is based on when 

fracture of transverse reinforcement occurs. Further discussion on the derivation or the conservatism 

of these strain values can be found in Priestley and Kowalsky (1998).   

 

2.3. Graphical Representation of Limit-State Curvatures   
Considering the amount of moment-curvature results, obtained for the many different T-shaped walls 

with different properties in each direction of loading, there is need of an effective way of 
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representation. However, this representation is rendered complicated due to the involvement of four 

parameters, i.e. web-flange ratio, axial load, reinforcement percentage and of course dimensionless 

curvature. Therefore, Figure 1 to 3 were produced, relating the different percentages of reinforcement 

with their contours presenting the values of dimensionless curvature in relation to the axial and 

web-flange ratio, given respectively in the horizontal and vertical axis, offering an immediate 

comparison of the values of dimensionless curvature. Due to limited space, the equivalent graphs for 

concentrated reinforcement are not presented in this paper, but can be found in Smyrou (2008). 

 

  
Figure 1 Dimensionless yield curvature Ky for flange in tension (left) and compression (right) for 

uniform distribution of reinforcement 

 

 
Figure 2 Dimensionless serviceability curvature Ks for flange in tension (left) and compression (right) 

for uniform distribution of reinforcement 
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Figure 3 Dimensionless damage-control curvature Ku for flange in tension (left) and compression 

(right) for uniform distribution of reinforcement 

 

2.4. Analytical Representation of Limit-State Curvatures 

Evaluating the variation in the results of the moment-curvature analyses, it is inferred that the 

dimensionless curvature can be expressed by a set of equations. The expressions proposed will be 

different for flange in tension (FiT) and in compression (FiC), as well as for uniformly distributed and 

concentrated reinforcement. The equations given in the following sections were obtained after 

regression analysis, where all the moment-curvature analyses results were considered and special 

effort was made in order to minimise the variation. 

 

2.4.1 Yield curvature  

The expressions proposed for the dimensionless yield curvature follow the general form: 

 

Ky = κ + xA + y·(ρ-λ) ± %                            (2.1) 

 

where A is the web-flange ratio and ρ is the reinforcement content. The yield curvature can be 

expressed in a general form as φy=Ky·εy/lw (Paulay, 2002). The constants, best-fit for the equations, 

vary for flange in tension and compression, as well as for distributed and concentrated reinforcement 

(Table 2). 

 

Table 2 Parameters for yield curvature expression including ρ 

 Uniform  

reinforcement 

Concentrated  

reinforcement 

 FiT FiC FiT FiC 

x -0.008 0.045 0.005 0.07 

y -0.8 20 10 20 

κ 2.15 1.80 2.10 2.00 

λ -0.05 0.02 0.015 0.036 

% 12 9 9 8 

 

Proceeding with simplifying the previous expressions, the reinforcement ratio is removed as variable 
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from the equations proposed, still leading to satisfactory percentage of variation. The simplified 

expressions have the same form, though they do not include the same constant term. The exclusive 

participation of the web-flange ratio renders the detection of the effect of the geometry of the section 

easy. Note that in the case of flange in tension for uniform distribution of reinforcement the effect of 

A is insignificant, so it can be eliminated. The expressions including only A follow the form: 

 

Ky = x + yA ± %                             (2.2) 

 

Table 3 Parameters for yield curvature expression including only A 

 Uniform  

reinforcement 

Concentrated  

reinforcement 

 FiT FiC FiT FiC 

x 2.15 1.57 2.15 1.60 

y 0 0.06 -0.023 0.06 

% 13 16 10 14 

 

Alternatively, the expression suggested can be reduced to simpler ones, different for each case, that 

take a constant form. This simplification requires a compromise in the precision in the case of flange 

in compression, since it leads to higher percentage of variation. Specifically, for the uniformly 

distributed reinforcement the expressions respectively for flange in tension and compression are: 

 

φy,FiT = 2.15·εy / lw  ± 13%                           (2.3) 

 

φy ,FiC = 1.75·εy / lw  ± 23%                           (2.4) 

 

For concentrated reinforcement the equivalent expressions are:  

 

φy,FiT = 2.15·εy / lw  ± 12%                          (2.5) 

 

φy ,FiC = 1.80·εy / lw  ± 20%                          (2.6) 

     

The aforementioned relations offer in a simple way a good estimate of the yield curvature. In fact 

they can be reduced in one regardless of the reinforcement configuration, where the dimensionless 

yield curvature K takes the values 2.15 and 1.80 for flange in tension and compression respectively. 

 

2.4.2 Serviceability curvature 

In the case of the serviceability curvature for flange in tension, it is rather difficult to fix a 

representative expression. The obtained relation takes a sophisticated form and exhibits significantly 

high variation. The general form of the relation for flange in tension is given by Eqn. 2.7, while the 

parameters involved are presented in Table 4.  

 

Ks, FiT = 16 - xρ - (N/ ρ)
y
 + zA ± %                      (2.7) 

 

Table 4 Parameters for serviceability curvature expression 

 Uniform  

reinforcement 

Concentrated 

reinforcement 

 FiT FiT 

x 400 300 

y 0.5 0.6 

z 1.3 1.5 

% 35 35 
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It is reminded that A is the web-flange ratio, ρ is the reinforcement ratio and N is the axial load ratio, 

which has an effect on the serviceability curvature and therefore is included. Finally, it is underlined 

that the values corresponding to flange in tension should be treated cautiously and are given for the 

sake of completeness with doubts about their usefulness.  

 

On the contrary, for flange in compression a low variation makes possible the use an expression for 

the serviceability curvature of a constant form. Therefore, thee expression for the flange in 

compression has constant form and coincides for both uniform and concentrated reinforcement, with 

9% and 12% percentage of variation respectively. Specifically: 

 

Ks, FiC = 17 ± %                             (2.8) 

 

It is reminded that φs=Ks /1000·lw. Since the limit curvatures for serviceability, proposed by Priestley 

and Kowalsky (1998) for rectangular walls, are directly related to maximum permissible tension 

strains, it is expected that they can be applied with reasonable accuracy to flanged wall sections such 

as T-shaped ones, provided that the flange is in compression, while for flange in tension lower values 

should be used (Priestley et al., 2007). This statement is confirmed by the findings of this work, since 

the derived expression of the serviceability curvature when flange is in compression differs slightly 

from the equivalent by Priestley and Kowalsky (1998), according to whom the predicted value for Ks 

is equal to 17.5. Moreover, the values obtained by the more complex expression for serviceability 

curvature, when flange is in tension, tend to the value for rectangular walls, especially when the 

reinforcement is higher and the flange width decreases, approaching thus the shape of rectangular 

wall. For the other T-shaped walls, lower values are achieved for flange in tension. 

 

2.4.3 Damage-control curvature 

Similar conclusions found for the serviceability curvature are drawn for the damage control curvature. 

The expressions obtained for flange in tension are characterised by complexity and very high 

variability, rendering them thus hard to use and unreliable for the estimation of the ultimate curvature 

for flange in tension. Therefore, it is judged that there is little point in presenting them. The variables 

involved (web-flange ratio, axial load ratio, reinforcement ratio) are in such a way inter-correlated 

that no specific trend for the ultimate curvature for flange in tension can be identified. Indicatively, it 

is mentioned that the values of Ku for flange in tension and web-flange ratio greater than 1.0 range 

between 40 and 80. Hence, the readers are referred to Smyrou (2008) for the exact values, as well as 

to Figure 3. On the other hand, in the case of flange in compression the ultimate curvature can be 

estimate with absolute precision, something expected by the shape of the relative curves. That is why 

no percentage of variation is given for the respective relations. The expressions for flange in 

compression for uniform and concentrated reinforcement are respectively given by Eqn. 2.9 and 2.10. 

It is characteristic that the damage control curvature depends exclusively on the web-flange ratio.  

 

Ku, FiC = 65 + 0.5A                               (2.9) 

 

Ku, FiT = 65 + 1.1A                              (2.10) 

 

The reader is reminded that these expressions have been developed for web-flange ratios between 0.5 

and 6.0. As previously, note that φu=Ku /1000·lw. 

 

2.5. Moment Capacity of T-Shaped Sections 

The results from the full set of moment-curvature analyses provided data for the nominal moment 

capacity of the T-shaped walls, which is of interest considering the asymmetry of the T-shaped 

sections. The dimensionless nominal moment MDN is defined as   

 

MDN = MN /fy·t·l
2
w                              (2.11) 
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where MN is the nominal moment, fy is the yield strength of steel, lw is the web length and t is the web 

width. Note that for both FiT and FiC, the web width is used in the expression of MDN, as the 

comparison becomes easier by having a common definition. Traditionally, dimensionless moment 

capacity has been related to concrete compression strength, rather than the steel yield strength, but the 

moments, for the axial load ratios relevant to walls are almost independent of concrete strength, and 

directly proportional to steel yield strength (Priestley et al., 2007). The dimensionless results are 

expected to apply to other wall section sizes and material strengths within the normal range of 

material strengths. 

  

Indicatively, the graphs of dimensionless moment for both directions of loading for solely one 

web-flange ratio are provided in Figure 4. Due to space limitations, the complete set of relative 

graphs is not shown but can be found in the work by Smyrou (2008). As expected, the dimensionless 

moment reduces with decreasing reinforcement ratio. The difference in the moment capacity of the 

two directions becomes more pronounced as the web-flange ratio decreases, since the presence of a 

strong flange contributes significantly to the moment capacity of the section. This difference is less 

intense for concentrated reinforcement, because the reinforcement at the web tip improves the 

moment capacity of the relatively weaker web. The moment capacity for flange in tension is 

constantly higher than the moment for flange in compression, with the exception of sections with 

concentrated reinforcement and high web-flange ratio, in which the flange-in-compression moment is 

comparable or slightly excels the equivalent for flange in tension.  
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Figure 4 Dimensionless moment for web-flange ratio 2.0 (uniformly distributed reinforcement) 

   

2.5. Elastic Stiffness of T-Shaped Sections 

The elastic stiffness of the T-shaped walls, defined by the nominal moment MN and the yield 

curvature φy, to the initial uncracked section stiffness EIgross is given by 

 

grossy

N

gross EI

M

EI

EI

φ
=                            (2.12) 

 

It is noted that the stiffness of the gross uncracked section was computed ignoring the stiffening effect 

of flexural reinforcement. As expected, the elastic stiffness increases for increasing reinforcement 

amount and axial load ratio, with the former being notably more influential. In particular, in case of 

the uniformly distributed reinforcement and for web-flange ratios less than unity, the elastic stiffness 

is approximately double of the equivalent for flange in compression, reflecting the dominance of the 

flange’s presence. For web-flange ratios higher than unity the values of elastic stiffness for both 

directions of loading are comparable but those for flange in tension remain higher, something that 

becomes less evident for decreasing flange width. For concentrated reinforcement the elastic stiffness 

values in general are relatively augmented. For web-flange ratios higher than unity, the 

flange-in-compression elastic stiffness is interestingly higher than the corresponding one for flange in 



The 14
th  

World Conference on Earthquake Engineering    

October 12-17, 2008, Beijing, China  
 

 

tension, which is exclusively attributed to the concentrated amount of reinforcement at the web tip 

that manages to outbalance the effect of the flange. This is not achieved for web-flange ratios less 

than unity, in which the flange still dominates. However, by concentrating the reinforcement the 

characteristic of T-shaped sections difference in stiffness can be cancelled, which can prove useful in 

design. In general, depending on the web-flange ratio and the reinforcement configuration, the elastic 

stiffness in any of the two directions of loading for T-shaped walls can deviate substantially from the 

values reported for the elastic stiffness of rectangular walls (Priestley et al., 2007). Moreover, the fact 

that the range of elastic stiffness varies quite significantly underlines the strong dependence of elastic 

stiffness on axial load ratio and reinforcement ratio. Clearly, the common assumption of constant 

section stiffness independent of flexural strength is entirely inappropriate. As previously, a sample of 

graphs of the elastic stiffness of T-shaped sections is given in Figure 5. 
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Figure 5 Elastic stiffness for web-flange ratio 2.0 (uniformly distributed reinforcement) 

 

 

3. CONCLUSIONS 
 

Curvature relationships for the yield, serviceability and damage-control curvatures were developed 

for T-shaped walls with regard to their asymmetric properties. The results were presented by 

graphical and analytical means as a function of axial load ratio and reinforcement content for 

different levels of complexity. Thus, the estimation of appropriate curvature ductility factors for each 

limit-state can be realised. In conjunction with the information on the moment capacity and the elastic 

stiffness provided, the properties of T-shaped sections are completely and realistically defined and 

constitute useful and necessary tool for Direct Displacement-Based Design of T-shaped RC walls. 
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