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ABSTRACT : 

GDEE-based seismic response analysis and reliability evaluation of structures are outlined. The stochastic 
ground motion can be represented by a random Fourier function where basic random variables are involved via
the physical stochastic model. The principle of preservation of probability can then be applied to the augmented 
system composed of any arbitrary physical response quantities related to the system and the basic random 
parameter set. A family of generalized density evolution equation can thus be derived and solved using 
numerical methods. Further, introducing appropriate virtual stochastic process, the extreme value distribution of 
response of the system can be obtained and thus the dynamic reliability and the global reliability can be 
evaluated by a simple one-dimensional integral. The approach is applied to seismic response analysis and
reliability evaluation of a practical structure located in a city where the seismic fortification intensity is 8
degree. The reliabilities of the structure with and without vibration mitigation system are compared. 
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1. INTRODUCTION 
 
Safety of structures under strong earthquake is of paramount importance to reduce the life and property loss. 
One of the most important issues for the earthquake is the large degree of randomness involved in the time, 
location and intensity (magnitude) (Li and Li, 1992). The recent Wenchuan earthquake strengthened the 
necessity of capturing the performance of engineering structures once again, particularly in the sense of
reliability. In the past over one century, many researches have been done in seismology and earthquake
engineering, resulting in a variety of results and approaches that improve the seismic design of engineering
structures, both in the seismic risk analysis (Dowrick, 2003) and structural dynamics (Clough and Penzien, 
1993). However, precise seismic reliability evaluation for practical engineering structures is still unavailable in 
that: (1) the models for stochastic ground motion are mainly based on statistics and are not mature enough
(Kanai, 1957; Jennings et al, 1968); (2) the approaches for stochastic response analysis of large complex
structures are not available (Schuëller, 1997; Lutes and Sarkani, 2004); and (3) the traditional dynamic 
reliability theory can not obtain the precise dynamic reliability, let alone the global reliability (Madsen et al, 
1986).  
 
In the past years, the probability density evolution theory for stochastic dynamic response analysis and
reliability evaluation has been developed (Li and Chen, 2004, 2008; Chen and Li, 2007, Chen et al, 2007). The 
theory starts with the principle of preservation of probability, and yields a family of generalized density 
evolution equation, via which not only the probability density function and its evolution of any arbitrary
response quantities, but also the extreme value distribution, can be obtained. Combined with the physical
stochastic ground motion, the seismic response analysis and reliability evaluation can be carried out. The 
present paper outlines such an approach and applies it to a practical engineering structure. 
 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
2. GENERALIZED DENSITY EVOLUTION EQUATION FOR DYNAMIC RESPONSE ANALYSIS 
 
The equation of motion of an engineering structure can usually be written as 
 

g( ) ( )x t+ + = −MX CX f X MI                            (2.1)
 
where M and C are the mass and damping matrix; , ,X X X  are the relative acceleration, relative velocity and 
relative displacement, respectively; f is the restoring forces, in the case =f KX , the structure is linear, 
otherwise nonlinear; I is the column vector with all components being 1; g( )x t  is the earthquake ground 
acceleration, which should be regarded as a stochastic process. 
 
 
2.1 Physical Stochastic Model for Ground Motion 
 
The frequency 0ω  and the damping ratio ζ  of the site soil are usually random variables, which are two of the 
major sources of randomness involved in the ground motion on the surface of the site. The other major source 
of the randomness is the amplitude of the motion on the bedrock of the site. Based on this understanding, the 
random ground motion in the surface of the site can be regarded as the process on the bedrock filtered through
the site soil (Li and Ai, 2006). Thus, the Fourier transform of the absolute acceleration on the surface of the site
can be given by 
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Here g( )U ω  is the Fourier transform of the acceleration of the input seismic waves. Introducing the concept of 
random Fourier function, the equation above can be transformed as 
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where η  is a random variable related to the amplitude of the input seismic waves, g( , )F η ω  is the Fourier 
spectrum of the accelerations on the bedrock.  
 
Notice that the inverse Fourier transform of ( )XF ω  will yield the time history of ground acceleration 
 

1
g( , ) [ ( , )]XX t F ω−=Θ ΘF                                   (2.4)

 
where 0( , , )ω ζ η=Θ  is the involved random vector. 
 
Substituting Eqn. 2.4 in Eqn. 2.1 yields 
 

g( ) ( , )X t+ + = −MX CX f X MI Θ                             (2.5)
 
 
2.2 Generalized Density Evolution Equation 
 
The equation of motion Eqn. 2.5 is usually well-posed if the initial condition 
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0 0 0 0( ) ,  ( )t t= =X x X x                                   (2.6)
 
is given. Clearly, the physical solution will depend on Θ  and can be written in the form 
 

0 0( ) ( , , , )t t= XX H x x Θ                                   (2.7)
 
Likewise, the velocity can be written in the form 
 

0 0( ) ( , , , )t t= XX h x x Θ                                   (2.8)
 
In essence, Eqns. 2.7 and 2.8 is the Lagrangian description of the original dynamical systems. 
 
In the analysis, one might be interested in some physical quantities other than the displacement and velocity, for 
instance, the strain or stress at a point of the structure, or the internal force or deformation in a section of a 
member of the structure. In this case, we denote the interested physical quantities as T

1 2( , , , )mZ Z Z=Z . 
Clearly, these physical quantities are determined by the displacement and velocity vectors, i.e. 
 

0 0( ) [ ( ), ( )], ( )t t t t= =Z X X Z zZ                              (2.9)
 
Substituting Eqns.2.7 and 2.8 in 2.9 yields 
 

0 0 0 0( ) [ ( , , , ), ( , , , )]
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t t t

t
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Θ

Z
                        (2.10)

It is seen that Eqn. 2.10 is also a dynamical system, in which the randomness involved comes completely from
Θ . Because of this, the augmented system ( ( ), )tZ Θ  is a probability preserved system. From the random 
event description of the principle of preservation of probability, we have (Li and Chen, 2008) 
 

D ( , , ) 0
D t

p t d d
t θΩ ×Ω

=∫ Z z zΘ θ θ                            (2.11)

 
where D Dt  is the total derivative, ( , , )p tZ zΘ θ  is the joint PDF of ( ( ), )tZ Θ , tΩ  is the domain at time t

corresponding to 0Ω , 0Ω  is any arbitrary domain in the state space at time 0t , θΩ  is any arbitrary domain 
in the distribution domain of θ . 
 
After a series of mathematical manipulations, a family of generalized density evolution equation can be derived
as follows 
 

1

( , , ) ( , , )( , ) 0
m

j
j j

p t p tZ t
t z=

∂ ∂+ =
∂ ∂∑Z Zz zΘ Θθ θθ                        (2.12)

 
The initial condition is  
 

0 0( , , ) ( ) ( )p t pδ= −Z z z zΘ Θθ θ                             (2.13)
 
It is worth noting that the dimension of Eqn. 2.12 is independent to the dimension of the original system Eqn.
2.1. In many cases, we have 1m =  and thus Eqn. 2.12 reduces to 
 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

( , , ) ( , , )( , ) 0Z Zp z t p z tZ t
t z

∂ ∂+ =
∂ ∂

Θ Θθ θθ                         (2.14)

 
The initial condition is  
 

0 0( , , ) ( ) ( )Zp z t z z pδ= −Θ Θθ θ                             (2.15)
 
Once ( , , )Zp z tΘ θ  is obtained by solving Eqns. 2.14 and 2.15, the PDF of Z can be given by 
 

( , ) ( , , )Z Zp z t p z t d
Ω

= ∫
Θ

Θ θ θ                              (2.16)

 
 
3. SEISMIC RELIABILITY EVALUATION 
 
As a dynamic reliability problem, the seismic reliability can be evaluated according to the first-passage criterion 
or the low-cycle fatigue criterion. In the present paper, we consider the first-passage reliability defined by 
 

sPr{ ( ) , [0, ]}R X Tτ τ= ∈ Ω ∈                              (3.1)

 
where T  is the time duration, X  is the interested physical quantity, sΩ  is the safe domain. For instance, in 
the seismic reliability evaluation, X might be any inter-story drift. 
 
The traditional theory for dynamic reliability based on the level-crossing process needs the computation of 
expected crossing rate and the assumption on the nature of crossing events. This makes the error not be 
guaranteed. On the other hand, if the dynamic reliability is viewed from the angle of extreme event, the above 
problems do not exist. In fact, Eqn. 3.1 is equivalent to 
 

ext sPr{ }R X= ∈ Ω                                  (3.2)
 
where extX  is the extreme value corresponding to the failure criterion in Eqn. 3.1. For instance, if Eqn. 3.1 is 
 

BPr{ ( ) , [0, ]}R X x Tτ τ= ≤ ∈                              (3.3)

 
then 
 

ext [0, ]
max ( )

T
X X

τ
τ

∈
=                                  (3.4)

 
If a virtual stochastic process is introduced, the PDF of extX , dented by 

ext
( )Xp x , can be obtained (Chen and

Li, 2007). Thus, the reliability can be evaluated by 
 

ext
s

ext sPr{ } ( )XR X p x dx
Ω

= ∈ Ω = ∫                           (3.3)

 
Thus, the dynamic reliability can be transformed to the problem of a one-dimensional integral. Likewise, when 
the equivalent extreme value event is introduced, then the global reliability (system reliability) can be evaluated
without essential difficulties (Li et al, 2007). 
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4 SEISMIC RESPONSE AND RELIABILITY EVALUATION OF A PRACTICAL STRUCTURE 
 
Seismic response and reliability evaluation of a practical engineering structure are carried out. It is a high-rise 
building with the height of 94.95m, located in a city of Eastern China where the earthquake fortification 
intensity is 8 degree. With the routine seismic design, it is very hard to meet the seismic requirement. Thus, 
earthquake mitigation system composed of damping walls is designed and installed. 
 
The 3-dimensional finite element model of the building is shown in Figure 1, where the 3 stories in the bottom 
is the basement. 
 

 
Figure 1 Three-dimensional finite model 

 
Using the physical stochastic model for ground motion as described in Section 2.1, when we consider the 
situation of frequently occurred earthquake of intensity of 8 degree, i.e. the peak acceleration value with
exceedance probability of 63.5%, the peak acceleration on the bedrock should be 0.11g according to Chinese
Code for Seismic Design. But for the present site, investigations show that the peak acceleration with
exceedance probability of 63.5% is 0.084g. Thus, in this case, only the randomness involved in the frequency
and damping ratio of the site soil are considered. Using the strategy of selecting representative points via 
tangent spheres 221 points can be determined. Simultaneously the corresponding assigned probabilities can also 
be specified. 221 representative acceleration time histories can be generated. Once this is done, the response of 
the structure subjected to the 221 acceleration time histories can be computed and then the generalized density
evolution equation can be solved to obtain the probability density function of the responses. In the present 
investigations, we evaluate the PDF of the inter-story drifts.  
 
Figure 1 shows the mean and standard deviation of the inter-story drift of 22nd story. It is seen that the 
inter-story drift can be regarded as a mean-zero but non-stationary process because the standard deviation
varies against time. Shown in Figure 2 is the PDF of the inter-story drift at three typical time instants. Clearly, 
the PDF at different time is quite different not only in the distribution range, but also in the shape, some times
seems regular but sometimes quite irregular. Figure 3 pictures the PDF over the time interval [18, 20] s while 
Figure 4 pictures the contour of the PDF surface over the time interval [15, 20] s. 
 
Employing the approach of evaluating the extreme value distribution based on the generalized density evolution 
equation (Chen and Li, 2007), the PDF of each maximum inter-story drift can be obtained. Simultaneously the 
cumulative distribution functions are available. Notice that the threshold of the inter-story drift angle is 1/800 
for the present structure, the threshold of the inter-story drift is then 0 800d h= , where h is the story height. 

Thus the value of the CDF as the coordinate is 0d  is actually the reliability. Figures 5 and 6 show the PDF and 
CDF of the inter-story drift of 22nd story. The reliabilities of different stories are listed in Table 4.1. 
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        Figure 1 Mean and Standard deviation            Figure 2 PDF at different time instants 

   
          Figure 3 PDF evolution surface                 Figure 4 Contour of the PDF surface 

 

 
     Figure 5 PDF of the maximum inter-story drift      Figure 6 CDF of the maximum inter-story drift 

 
Likewise, the global reliability can be evaluated when the principle of equivalent extreme value event is 
employed (Li et al, 2007). It is 0.9416 in the present case. Clearly, it is seen that it is less than the smallest one 
in Table 4.1. 
 
The global reliability is less than 95%. This makes it necessary to reduce the seismic response by installing 
additional devices. In this regard, totally 61 W2000×H2000 damping walls are installed in the structure, 35 in 
X direction and 26 in Y direction. Investigations show that the equivalent damping ratio of the structure
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exceeds 7.5%. Thus, we assume the equivalent damping ratio is 7.5% and carry out the seismic reliability 
evaluation in a similar way. Table 4.2 lists the reliability of all the stories. Simultaneously, the global reliability 
of the structure is now promoted to 0.9856. Comparing Table 4.2 and Table 4.1 shows that the reliabilities of all
the stories are increased by installing the damping wall system. 
 

Table 4.1 Reliability of different stories (without damping walls) 

story reliability story reliability 

1 1.0000 15 0.9864 

2 1.0000 16 0.9858 

3 1.0000 17 0.9844 

4 0.9998 18 0.9811 

5 0.9891 19 0.9808 

6 0.9875 20 0.9749 

7 0.9899 21 0.9568 

8 0.9891 22 0.9459 

9 0.9891 23 0.9520 

10 0.9882 24 0.9681 

11 0.9872 25 0.9808 

12 0.9865 26 0.9865 

13 0.9867 27 0.9876 

14 0.9866 28 0.9896 
 
 

Table 4.2 Reliability of different stories (with damping walls) 

story reliability story reliability 

1 1.0000 15 0.9928 

2 1.0000 16 0.9927 

3 1.0000 17 0.9928 

4 1.0000 18 0.9930 

5 0.9963 19 0.9922 

6 0.9935 20 0.9898 

7 0.9929 21 0.9878 

8 0.9923 22 0.9875 

9 0.9928 23 0.9877 

10 0.9926 24 0.9885 

11 0.9925 25 0.9907 
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12 0.9923 26 0.9939 

13 0.9926 27 0.9956 

14 0.9928 28 0.9975 
 
 
5. CONCLUDING REMARKS  
 
The approach based on the probability density evolution theory for seismic response and reliability evaluation
of engineering structures is outlined. The implementation procedures are discussed. A practical structure 
located in a city where the seismic fortification intensity is 8 degree is investigated. The probability density 
functions and their evolution of the inter-story drifts are evaluated. The dynamic reliability of all the stories and 
the global reliability are evaluated. Moreover, the reliabilities of the structure with and without damping wall
systems are compared, showing the improvement of installment of the vibration mitigation system in a 
quantitative way in the sense of reliability. 
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