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ABSTRACT : 

The variation of the structure response stems from the randomness involved both in the loads and in the
structural parameters. Although the load randomness is deemed as the dominant one by many researchers, the 
debate on the contribution of the two sources to the variation of the structure response is still going on. In order
to help to clarify this question, based on the Taylor expansion of nonlinear stochastic function, the feasibility of
stochastic fluctuation is verified. Introducing the global sensitivity index, which considers the relative 
contribution of each variable to the total variance of the target functions, and adopting the probability density
evolution method (PDEM), the contribution of random variables to target quantities be explained rationally and
quantitatively, and the importance of load randomness to second statistical moments of the responses is 
verified. Finally, based on the above conclusions, stochastic fluctuation of the response of a 9-story 3-bay RC 
frame designed by fortification intensity 6 is analyzed, and it can be concluded from the analysis results that the 
relative stochastic fluctuation is obvious, but different for different responses, varies with the nonlinear
development process. 
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1. INTRODUCTION 
 
Based on the concept of theory of reflection (Li 1996), the randomness derives from uncontrollability. And the 
responses of structure depend on both structural parameters and loads. Obviously, the randomness of structural 
responses is influenced by both structural parameters and loads. And, theoretically, the most rational analysis 
approach for stochastic system should be involved in both random sources. However, it is more complex than 
the one involved in only random parameters or only random loads. On the one hand, there must be more random 
variables for the system with both random parameters and random loads; on the other hand, it is more complex 
in algorithm when both structural parameters and loads are random. 
 
In order to simplify the analysis of stochastic systems, there are two approaches, the one is replacing the 
complex systems with systems involved in only random parameters, and the other is reducing it into systems 
only with random loads. But which one is more rational? Although the randomness arising from load is deemed 
as the dominant one by many researchers, the debate on the contribution of the two sources to the variation of 
the structure response is still going on.  
 
In this paper, based on the Taylor expansion of nonlinear stochastic function, the feasibility of stochastic 
fluctuation of the second order statistical moments is verified. And taking the RC frame in seismic region as 
example, the stochastic fluctuation of responses for structure under equivalent static load is analyzed, then 
introducing the global sensitivity, the contribution of variables to the stochastic fluctuation of responses is 
illustrated quantitative. 

 
 

2. STOCHASTIC FLUCTUATION ANALYSIS BASED ON TAYLOR EXPANSION 
 
2.1 introduction of stochastic fluctuation 
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Fluctuation, which mainly uses in the field of stochastic physics, stochastic mechanics and non-equilibrium 
statistical mechanics, is the deviation between the value of physical quantity and its macro mean value. 
Obviously, fluctuation is a random variable, so is also called as stochastic fluctuation. Up to now, the stochastic 
fluctuation usually describes by the variance of deviation quantitatively, what is more, relative fluctuation, 
which is equal to the standard variance divided by sample value, is introduced to describe the relatively variety 
of stochastic fluctuation(Hu 1994; Kadanoff 2000). Clear, relative fluctuation is nearly the coefficient of 
variation (COV) for deviation. So, for simplicity, in this paper the COV is adopted to describe the stochastic 
fluctuation. 
 
2.2 Theoretical analysis of stochastic fluctuation based on Taylor expansion 
Without loss of generality, the physical equation for structures under static load follows 

 ( ), ,X G F= ζ Θ  (1) 
where X is one of responses, such as sectional moment, shear force; is the vector of deterministic structural 

parameters; [ ]1, , m
′=Θ Θ Θ is the vector of random structural parameters and [ ]1, , nF F F ′= is the vector of 

random loads. For stating conveniently, define the joint random vector Ξ  which reads 

 [ ] [ ] [ ]1 1 1 1, , , , , , , , , , ,m n m m m nF F F + +
′ ′′= = = Ξ Ξ Ξ ΞΘ Θ ΘΞ  (2) 

 

Taking the Taylor expansion of ( ), ,G Fζ Θ  at 0 1,0 ,0 1,0 ,0, , , , ,m m m n+ +
′⎡ ⎤= = Ξ Ξ Ξ Ξ⎣ ⎦Ξ Ξ , where 0Ξ  is the mean 

value of Ξ , ( ), ,G Fζ Θ  can be expanded as follows: 
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Then the variance of X  can be calculated by: 

[ ] [ ] [ ]
0 0

2 1

1 2
1 1 1 2 1 1 1 2

2 Cov ,
m n m n m n

i i i
i i i ii i i

G G GD X D
+ + − +

Ξ=Ξ Ξ=Ξ
= = = +

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= ⋅ Ξ + ⋅ ⋅ Ξ Ξ +⎜ ⎟ ⎜ ⎟∂Ξ ∂Ξ ∂Ξ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  

( )( )
0

2 2

1 1,0 2 2,0
3 1 4 1 1 1 2 1 1 2 3 4

1 Cov ,
4

m n m n m n m n

i i i i
i i i i i i i i

G G+ + + +

Ξ=Ξ
= = = =

⎛ ⎞∂ ∂ ⎡⋅ ⋅ Ξ − Ξ Ξ − Ξ⎜ ⎟ ⎣∂Ξ ∂Ξ ∂Ξ ∂Ξ⎝ ⎠
∑∑∑∑  

( )( )
0

2

3 3,0 4 4,0
3 1 1 1 2 1 3 1 2

m n m n m n

i i i i
i i i i i i

G G+ + +

Ξ=Ξ
= = =

⎛ ⎞∂ ∂⎤Ξ − Ξ Ξ − Ξ + ⋅⎜ ⎟⎦ ∂Ξ ∂Ξ ∂Ξ⎝ ⎠
∑∑∑  

 ( ) ( )( )3 3,0 1 1,0 2 2,0Cov ,i i i i i i⎡ ⎤⋅ Ξ − Ξ Ξ − Ξ Ξ − Ξ +⎣ ⎦  (4) 

where [ ]D ⋅ is variance and ( )Cov ,⋅ ⋅  denotes the covariance.  
 
If the components of Ξ  are independent, Eq. (4) will be reduced into 
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  (5) 
It can be found from Eq. (5) that stochastic fluctuation of responses depend on both the randomness of structural 
parameters and the one of loads. When X  is replaced by the its linear terms, the variance of responses is the 
linearly weighted sum of the contribution of all random variables, where the weighted coefficient is the square 
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of the partial derivative for X  on iΞ . As known to all that responses of linear structures can be formulated by 
the linear function of loads only, but not the linear function of structural parameters, what’s more, structural 
parameters are coupled with loads. Therefore, the linear approximation of X  is exact for linear structures only 
with random loads, and for the other cases, the precise of linear approximation is not enough. 
 
Besides the stochastic fluctuation of structures under entire loads, the one of structures during the loading 
process is also significant, and the former is just the part of the latter.  
 
Assume the loads increase proportionally, i.e. 0F F= τ , where 0F  is the nominal load parameter and τ is the 
load factor, and the nonlinear development equation of structures follows: 

 ( ) ( )0 0, , , , ,X G F G F= =ζ τ ζ τΘ Θ  (6) 
Because τ is not a random variable, the formula for variance of X  doesn’t change and is still Eq. (5) in format 
except G varying with τ.  
 
Taking linear structures with proportional loads as example, we investigate the development process of 
stochastic fluctuation. The responses can be calculated by (Zhong et. al 1989; Shen 1989)  

 ( ) -1
0K F= ⎡ ⎤⎣ ⎦ τΘΔ  (7a) 

 { } ( ) { }ee eK= ⎡ ⎤⎣ ⎦ΘΧ Δ  (7b) 
where ( )K ⋅  is stiffness matrix, Δ  is the vector of displacement response, superscript ‘e’ denotes element, and 
X  is the vector of internal forces. So the internal forces can reduces into  

 ( ) 0G FΧ τΘ=  (8) 
By comparing Eq. (8) with Eq. (7a), it can be found that Eq. (8) is also fit for Δ . Then the relative stochastic 
fluctuation varying with τ follows 
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Obviously, during the process of loading, the relatively stochastic fluctuation keeps constant. On the other hand, 
this conclusion is not true for nonlinear structures. In other word, stochastic fluctuation or relative stochastic 
fluctuation derives from randomness, while the irregularity of nonlinear development for relative stochastic 
fluctuation comes from the couple between randomness and nonlinearity. 

 
 

3. GLOBAL SENSITIVITY INDEX 
 
According to Eq. (1), the probabilistic structure of X  depends on the one of Ξ , but the contribution of each 

iΞ  to X  is quite different. Up to now, researchers usually focus on the study of sensitivity index, which is the 
partial differential of X  on iΞ . Obviously, the sensitivity index reflects the contribution partially. For 
example, the sensitivity index of X  on 1Ξ  is bigger than the other random parameters, but the variance of 

1Ξ  itself is much smaller, so the contribution iΞ  to X  is not essential according to Eq. (5).  
 
Recently, Chen & Li (2008a) proposed a more rational sensitivity index, that is global sensitivity index. Its basic 
idea is to considers the relative contribution of iΞ  to the total variance of X  entirely. 
 
Firstly, assume iΞ is a deterministic variable and the value of iΞ is equal to its mean value iξ , then the COV 
of X  reads 

 i i i
X X E Xδ σΞ Ξ Ξ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (10) 

where [ ]1 1 1, , , ,i i m ni − + +Ξ = Ξ Ξ Ξ Ξ  means the subset of Ξ  without the component iΞ , [ ]σ ⋅ is standard 
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variance and [ ]E ⋅ is mean value. Secondly, suppose iΞ is a random variable and the COV of X  reads 

 X X E Xδ σΞ Ξ Ξ⎡ ⎤ = ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (11) 
 
Obviously, the difference between Eqs. (10) and (11) lies on the contribution of the randomness for iΞ , so the 
global sensitivity index of COV can be defined as 

 
( ), i i

S X X Xδ δ δ δΞ Ξ Ξ Ξ
⎡ ⎤= ⎡ ⎤ − ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦  (12) 

And the index can describe the contribution of iΞ  to X  entirely.  
 
 

4. GENRTALIZED DENSITY EVOLUTION EQUATION OF NONLINEAR DEVELOPMENT 
PROCESS 
 
The full range of nonlinear development process for structures under proportional loads can be formulated as Eq. 
(6). Therefore, for a given sample of Ξ , i.e. ξ , there must exist a formula as follows 

 ( ) ( ) ( )0, = , , , = , ,Xp x x G F x Gτ δ ζ τ δ ζ τ⎡ ⎤− −⎡ ⎤⎣ ⎦⎣ ⎦Θξ ξΞ  (13) 

where ( )Xp ⋅Ξ  is the conditional probability density function (PDF) of X  and δ[·] the one-dimensional Dirac 

delta function. Actually, Eq. (13) can be regarded as the result of random event description of the principle of 
preservation of probability. 
 
After differential operation and reduction, Eq. (13) becomes 

 

( ) ( ) ( )
0X Xp x, p x,G , ,

x

τ τζ τ
τ τ

∂ ∂∂
+ ⋅ =
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ξ ξξΞ Ξ  (14) 

According to the conditional PDF formula, Eq. (14) can be translated into 

 
( ) ( ) ( )

0X , X ,p x, , G , , p x, ,
x

τ ζ τ τ
τ τ

∂ ∂ ∂
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of which the initial condition reads 

 ( ) ( ) ( )0X ,p x, , x pττ δ= =ξ ξΞ Ξ  (16) 
Therefore, ( )Xp x,τ  can be obtained by 

 
( ) ( )= dX X ,p x, p x, ,τ τ∫ ξ ξΞ  (17) 

And the Eq. (15) is named as the GDEE of the nonlinear development process. 
 

For general nonlinear structures, ( )G , ,ζ ξ τ
τ

∂
∂

 is usually unknown, so it is impossible to obtain the analytical 

solution of Eq. (15). Nonetheless, GDEE can be numerically solved by the following steps: 
○1  Select discretized representative points in the domain of the random vector, and the strategy of 

selecting points can be a lattice grid, a tangent sphere point set (Chen & Li 2008b) or a number theoretical point 
set (Li & Chen 2007). 

○2  For a given representative point, obtain ( )G , ,ζ ξ τ
τ

∂
∂

 from the full range nonlinear analysis of the 

deterministic structure. 
○3  Solve Eq. (15) under the corresponding initial condition to obtain the numerical solution. 
○4  Take numerical integration to get the numerical solution of ( )Xp x,τ . 

 
Based on ( )Xp x,τ , 

i
E X Ξ
⎡ ⎤
⎣ ⎦  and 

i
Xσ Ξ
⎡ ⎤
⎣ ⎦  or E X Ξ⎡ ⎤⎣ ⎦  and Xσ Ξ⎡ ⎤⎣ ⎦  can be calculated by 

one-dimensional integral. Clear, it is easy to obtain the nonlinear development process of global sensitivity 
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index. 

 
 

5. NUMERICAL CASE 
 
Consider a three-bay nine-story RC frame designed by fortification intensity 6, of which the details are show in 
Fig. 1. Randomness is involved in loads, dimension of section and strength of materials. 1Q , 2Q and 3Q  are 
perfect correlated and 0P , which is equivalent static load of earthquake action, is independent with them, and 
dimension of all sections are perfect correlated too. The statistical parameters for random variables follow: 

352M
yf Paμ = , 25M

cf
Paμ = , the mean value of dimension shows in Fig .1, 

1
100kQ Nμ = , 

2
60kQ Nμ = , 

3
30kQ Nμ = , and 

0Pμ  increases gradually, 0.03
yfδ = ， 0.09

cf
δ = ，  the COV of dimensions is 0.03, 

1 2 3
0.09Q Q Qδ δ δ= = =  and 

0
0.2Pδ = . 

 
According to different combinational cases of random variables which list in Tab. 1, the stochastic fluctuations 
and their nonlinear development process for several typical responses, such as the moment and shear force for 
the bottom section of the left column, the moment and shear force for the left section of the beam at the first 
floor and the displacement of the top left node, show in Fig. 2 to Fig. 6 (in which

0
100Pr μ= ). 

 
Based on the foregoing results, the nonlinear development process for global sensitivity indexes of different 
responses on dimensions, material parameters and load illustrate in Fig. 7 to Fig. 11 respectively. 
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0 

 
The details of column section 

floor h1 b1 A1 h2 b2 A2 
1-3 400 400 8 18Φ  450 400 8 20Φ

4-6 350 350 4 18
4 14
Φ
+ Φ

 400 350 4 20
4 14
Φ
+ Φ

7-9 300 300 4 18Φ  350 300 4 20Φ 

Fig. 1 The details of RC frame 

 

Tab. 1 Combinational cases of random variables 
case 1 3 5 7 

variables 0 1 2 3, , , , , , ,c yP Q Q Q f f h b  0 1 2 3, , , , ,P Q Q Q h b  0 1 2 3, , ,P Q Q Q  ,h b  

case 2 4 6  
variables 0 1 2 3, , , , ,c yP Q Q Q f f  , , ,c yf f h b  ,c yf f   
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Fig. 2 Nonlinear development process of stochastic 
fluctuation for the moment of the bottom section of 

the left column 
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Fig. 3 Nonlinear development process of stochastic 
fluctuation for the shear force of the bottom section 

of the left column 
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Fig. 4 Nonlinear development process of stochastic 
fluctuation for the moment of the left section of the 

beam at the first floor 

0.0 0.1 0.2 0.3 0.4
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

δ

r

 case 1
 case 2
 case 3
 case 4
 case 5
 case 6
 case 7

 
Fig. 5 Nonlinear development process of stochastic 
fluctuation for the shear force of the left section of 

the beam at the first floor 
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Fig. 6 Nonlinear development process of stochastic 
fluctuation for the displacement of the top left node
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Fig. 7 Nonlinear development process for global 
sensitivity indexes of the displacement of the top 

left node 
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Fig. 8 Nonlinear development process for global 
sensitivity indexes of the moment of the bottom 

section of the left column 
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Fig. 9 Nonlinear development process for global 

sensitivity indexes of the shear force of the bottom 
section of the left column 
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Fig. 10 Nonlinear development process for global 

sensitivity indexes of the moment of the left section 
of the beam at the first floor 
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Fig. 11 Nonlinear development process for global 

sensitivity indexes of the shear force of the left 
section of the beam at the first floor 

 
From the results mentioned above, the relative stochastic fluctuation is obvious, but different for different 
responses, on the other hand, it varies with the nonlinear development process. Among all of the random 
variables, the contribution of loads to the randomness of responses is essential, but the influence of dimensions 
and strength of materials is relative small. What is more, the global sensitivity index varies with the nonlinear 
development process. 
 
It is worthy to point out that the phenomenon of stochastic fluctuation may be larger than the results obtained in 
this paper, because the complex reversed loads will speed up the structural damage while this behavior can’t be 
described for proportional static loads. 

 
 

6. CONLUSION 
 
Based on the Taylor expansion of nonlinear stochastic function, the phenomenon of stochastic fluctuation in 
stochastic systems is verified, and the resources for stochastic fluctuation of responses are not only from the 
randomness of variables themselves, but also from some other factors, such as the behavior of structures. In 
order to quantify the importance of each random variable, introducing the global sensitivity index and adopting 
the probability density evolution method (PDEM), the nonlinear development process of relative stochastic 
fluctuation and the one of global sensitivity index is analyzed based on a 9-story 3-bay RC frame designed by 
fortification intensity 6 is analyzed, and it can be concluded from the analysis results that the relative stochastic 
fluctuation is obvious, but different for different responses. What is more, the contribution of loads to the 
randomness of responses is essential, but the influence of dimensions and strength of materials is relative small, 
so, in the sense of second statistical moments, it is more rational to consider the randomness of loads than the 
other variables. 
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