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ABSTRACT : 

This paper presents application examples of the Gyromass Element Method (GEM), a newly proposed method (Saitoh 
2007) that can calculate the time-history response of inelastic structures supported by soil-foundation systems showing 
frequency-dependent oscillations in impedance functions. A “gyromass” is an element defined as a unit system that 
generates a reaction force due to the relative acceleration of the nodes between which the gyromass is placed. In this 
study, the precision of simulations by using GEM is assessed. This study also confirms the feasibility of a model formed 
by combining the previously proposed models.  
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1. Introduction 
 
In general, soil-foundation systems show various frequency-dependent impedance characteristics, such as rapid 
oscillations or cut-off frequencies, depending on the types of foundations, soil profiles, and the direction of excitations, 
etc. In contrast, many recent studies of structural dynamics have focused on the inelastic behavior of structural systems 
because the methodology of performance-based seismic design, which has been applied to seismic codes and guidelines 
in many countries, allows modeling of the inelastic behavior of structural systems. The frequency dependency of 
soil-foundation impedance characteristics is usually considered in a numerical method performed in the frequency
domain, whereas the nonlinearity of superstructures is in the time domain because the inelastic behavior of materials and 
structural members strongly depends on the stress path being integrated stepwise. Although a variety of methods and
techniques by which the frequency-dependent impedance functions can be considered in a time-history analysis have 
been proposed, the most powerful and acceptable tool in practice is a simple model approximating the impedance 
functions by frequency-independent spring, dashpot, and mass elements [e.g., Meek and Veletsos (1974), Wolf and 
Somaini (1986), Nogami and Konagai (1986, 1988), Wolf (1994), Wolf and Song (2002)]. The reason for this is that the 
frequency-independent elements can be applied directly to conventional structural analysis. In recent years, various 
types of simple models consisting of these elements (generally called spring-dashpot-mass models) have been proposed 
for soil reaction, shallow foundations, embedded foundations, etc. Although increasing the number of elements and 
degrees of freedom results in more accurate fitting to the ideal impedance functions, in practical applications, simple 
models having a small number of elements and degrees of freedom are used. In general, however, such simple models 
show a moderate variation with frequency, and thus do not express the frequency-dependent impedance functions with 
sufficient accuracy. 
     Saitoh (2007) proposed a simple model by which various types of frequency-dependent impedance functions can 
be simulated using a mechanical element called a "gyromass". The gyromass is frequency-independent and is defined as 
a unit system that generates a reaction force due to the relative acceleration of the nodes between which the gyromass is 
placed.  In this study, this gyromass-based numerical method is called the Gyromass Element Method (GEM). In 
Saitoh (2007), a numerical example was presented where the nonlinear response of a single-degree-of-freedom system 
(SDoF system) supported by a 2x2 pile group was calculated. However, although this example demonstrates the 
advantage of GEM, more detailed application examples for simulating various impedance functions are necessary to 
enhance the feasibility of this method. In this study, therefore, several examples of the application are presented to 
accomplish this. 
 
2. Application Examples for Simulating Impedance Functions 
One of the most impressive examples is the application to impedance functions of pile groups. The reason for this is that 
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impedance functions of pile groups in general show complicated oscillations with frequency. These oscillations usually 
occur due to “in-phase” and “out-of-phase” pile-to-pile interactions, as explained in Dobry and Gazetas (1988). It is 
known that simulating impedance functions of pile groups by using spring-dashpot-mass models is quite difficult since 
some of these parameters often take negative values, which is considered to be unrealistic, and in general, unstable in 
numerical calculations. Here, a 3x3 pile group is taken as an application example using the published results of a 
rigorous solution (Kaynia and Kausel (1982)). 
 
2.1 Introduction of Type II model 
In the following simulation, one of the proposed models, called the “Type II Model”, is used. Details of this model are 
described in Saitoh (2007); therefore, an explanation of the fundamentals of this model is omitted here. Fig.1 shows that 
the Type II model consists of two types of unit systems: one is the base system, and the other is the core system 
composed of a spring k  and a unit having a gyro-mass m  and a dashpot c  arranged in parallel. The base system 
and the core system are arranged in parallel. As described in Saitoh (2007), an additional core system having different 
coefficients can be arranged in parallel with the Type II model in order to enhance the precision of the simulation, if 
needed. The impedance functions of the Type II model having multiple core systems shown in Fig.1 can be expressed by 
the following formula: 
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where the coefficient K  is equivalent to the static stiffness ( 00 =a ); iγ , iμ , and iβ  are, respectively, the 
dimensionless coefficients of the damper and the gyro-mass, and the stiffness ratio of the i -th core system shown in 
Fig. 1; and N  is the total number of core systems. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2.2 Effect of the number of core systems on simulation 
Fig. 2 shows a comparison of a horizontal impedance function of a 3 × 3 pile group (stiffness ratio of pile to soil 

1000=sp EE , slenderness ratio 15=dH , Poisson’s ratio 4.0=ν , material damping of soil 05.0=sβ , and distance 
ratio 10=dS , where S  is the axis-to-axis distance of the piles and d  is the diameter of the piles) simulated by the 
Type II model with the published results. In this comparison, the effect of the number of core systems upon the precision 
of the simulation is assessed. The properties used here are summarized in Table 1. Fig. 2 indicates that the precision of 
the simulation gradually increases as the number of core systems increases: in particular, the oscillations 
 

TABLE 1 Dimensionless coefficients of simple 
models simulating impedance functions of a 3x3 pile 
group. 
 
 coefficient Base Core-1 Core-2 Core-3 

Re.( ( )
sd KK 99 ) 0.56 0.56 0.56 0.56 

0γ 7.80 0.16 0.16 0.00 

0μ 0.00 1.60 1.60 1.60 

1β  2.00 1.67 1.65 

1γ  3.90 4.20 4.20 

1μ  7.00 8.50 9.50 

2β   1.20 0.25 

2γ   0.50 0.45 

2μ   0.90 1.80 

3β    1.25 

3γ    0.40 

3μ    0.80 
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Fig. 1  Type II Model. 
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Fig. 2 Normalized horizontal impedance functions of a 3×3 pile group simulated by using Type II model, 
showing (a) base system with no core system, (b) single core system, (c) double core systems, and (d) triple 
core systems. Comparison with the rigorous solution of Kaynia and Kausel (1982). (Imaginary part of the 
impedance is divided by the dimensionless frequency 0a ; ( )9

dK  is the dynamic impedance of a 9-pile 
group; ( )1

sK  is the static stiffness of a single pile.) 
 
in the high frequency region appearing in the rigorous impedance functions shows good agreement with the simulated 
results by using the Type II model that consists of three core systems. 
 
2.3 Combination of Type I and II models 
In the previous study [Saitoh (2007)], Type I and Type II were independently used for expressing the impedance 
functions showing cut-off frequencies and oscillations, respectively. The Type I model consists of two types of unit 
systems: one is the base system, and the other is the core system composed of a gyro-mass m  and a unit having a 
spring k  and a dashpot c  arranged in parallel. The base system and the core systems are arranged in parallel. As 
described in Saitoh (2007), an additional core system having different coefficients can be arranged in parallel with the 
Type I model in order to enhance the precision of the simulation, if needed. Here, as described in Saitoh (2007), the 
impedance functions of the Type I model having multiple core systems can be expressed by the following formula: 
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The Type I model is shown in Fig. 3. It is expected that a combination of the Type I and Type II models would be 
applicable for simulating more complicated impedance functions. Fig. 4 shows an impedance function of a soil-pile 
foundation designed for supporting a six-story building. This impedance function was evaluated by using the Thin Layer 
Method. Details of this analysis are described in the book published by AIJ (2006).  

Fig. 4 (a) shows the simulated impedance functions obtained using the Type I model consisting of three core 
systems. The properties of the models shown here are summarized in Table 2. The Type I model is considered to be 
suitable for simulating impedance functions that have cut-off frequencies; as a whole, good agreement can be seen in the 
figure. One drawback of the Type I model in this simulation may be the imaginary part below 1.5 Hz: a small difference 
appears due to the fact that the Type I model shows a sudden increase in the imaginary part, which is compatible with
the increase in the imaginary part at cut-off frequencies. Fig. 4 (b) shows a comparison with the impedance functions 
simulated by using the Type II model. The agreement is good in the imaginary part within the entire frequency region, 
whereas a slight difference appears in the real part below 2 Hz. At present, the influence of these differences upon the 
response of structural systems is not clear. Improvement of the proposed models is probably necessary to enhance the 
precision of the structural response. 

Fig. 4 (c) shows a comparison with a revised model consisting of two core systems of Type I and one core system
of Type II, and Fig. 4 (d) shows a comparison with another revised model that consists of one core system of Type I and 
two core systems of Type II. In Fig.4 (c), better agreement can be seen below 1.5 Hz because, in the core system of 
Type II, the imaginary part tends to increase. Fig. 4 (d) also shows better agreement in the real part, to some extent,
between the simulated results and the numerical solution below 2 Hz. It is concluded, therefore, that the combination of 
the Type I and Type II models may be effective for improving the agreement between the impedance functions. 
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Fig. 3 Type I Model. 

 
 
 

TABLE 2 Dimensionless coefficients of simple models 
simulating impedance functions of a pile group, 
published by AIJ (2006). 
 
 coefficient (a) (b) (c) (d) 

K 607000 607000 607000 607000 

0γ 0.30 0.00 0.00 0.50 

0μ 0.50 2.40 0.75 1.30 

1β 0.39 0.70 0.40 0.30 

1γ 2.90 0.95 4.00 2.00 

1μ 16.0 4.80 16.0 9.00 

2β 0.52 0.65 0.56 0.81 

2γ 1.00 0.41 0.86 1.20 

2μ 6.00 0.90 4.80 6.00 

3β 0.08 0.95 0.33 0.22 

3γ 0.50 0.85 0.80 0.50 

3μ 2.00 1.80 2.50 1.50 

 
                : Using core system of Type I 
 

: Using core system of Type II 
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Fig. 4 Horizontal impedance functions of a designed pile group simulated by using Type I, Type II, and 
combined models, using (a) triple Type-I core systems, (b) triple Type-II core systems, (c) combined 
double Type-I core systems and single Type-II core system, and (d) combined single Type-I core system 
and double Type-II core systems. Comparison with the numerical results published by AIJ (2006). 

 
 
 
3. NONLINEAR RESPONSE OF STRUCTURAL SYSTEMS INFLUENCED BY PRECISION OF 
SIMULATION OF IMPEDANCE FUNCTIONS 
 
In this section, the influence of the different impedance functions simulated by using the Type II models studied in Fig.
2 upon the nonlinear response of structural systems is assessed. In this study, a structural system consisting of a 
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Fig. 5 Time-history of 2004 Ojiya EW (K-NET).

  
 
superstructure, which is represented by an inelastic one-degree-of-freedom system, and an elastic soil-pile system 
represented by a footing mass and the Type II models shown in Fig. 2. This structural system is identical to the one 
studied in Saitoh (2007), where the equation of motion of the system is described. The footing is assumed to be free only 
in the lateral direction, whereas the movements of the footing are completely restrained in the rotational and vertical 
directions. Moreover, the inelastic one-degree-of-freedom system supported by the soil-pile system consists of a mass 
and a spring that transfers only the shear force between the footing and the superstructure. The inelasticity of the 
superstructure is assumed to be comparable to the Clough model. The spring of the superstructure has a bi-linear 
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Fig. 6 Hysteresis loop of inelastic superstructure ( 8.0=yk ) supported by a 3×3 pile group simulated by using 
Type II models shown in Fig. 2. (a) Base system with no core system, (b) Single core system, (c) Double core 
systems, and (d) Triple core systems. 
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Fig. 7 Hysteresis loops of inelastic superstructure ( 0.2=yk ) supported by a 3×3 pile group simulated by using 
the Type II models shown in Fig. 2. (a) Base system with no core system, (b) Single core system, (c) Double core 
systems, and (d) Triple core systems.  

 
 
skeleton curve where the ratio of the tangent stiffness to the initial stiffness is assumed to be 1.0=α . The properties of 
the model are as follows: The masses of the superstructure and footing are 500=sm  t and 200=fm  t, respectively. 
The effective foundation input motion in the horizontal direction is assumed to be an observed earthquake record called 
2004 Ojiya EW (K-NET) shown in Fig. 5. This earthquake wave contains a wide range of frequency components with 
extremely large amplitude. Time-history analysis is performed by using Newmark’s method ( 61=β ) as a numerical 
integration scheme, where the time interval is 0.002 s. Moreover, the modified Newton-Raphson method is applied as a 
numerical iterative procedure for calculating the nonlinear response of the system. In this analysis, the parameter sca
and the static stiffness )1(

sK  are assumed to be 0.02 s and 153400 kN/m, respectively. 
     Fig. 6 shows a comparison of the hysteresis loops of the superstructure when the yielding strength coefficient yk
equals 0.8. The hysteresis loop where the impedance function is simulated without any core system, shown in Fig. 6 (a),
differs from the other hysteresis loops where core systems are used for simulating the impedance functions. The results 
also show that the response of the superstructure tends to decrease when the impedance functions are more precisely 
simulated. In addition, it is noted that an appreciable difference in the responses appears in cases with and without
considering the second core system that may affect the impedance functions beyond the frequency 0a =0.4, as shown in 
Figs. 2 (b) and (c).  

(a) (b)

(c) (d)
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     Fig. 7 shows a comparison of the hysteresis loops of the superstructure when the yielding strength coefficient yk
equals 2.0. The figure indicates that a marked difference appears in the responses with and without considering core 
systems. In addition, the results show that additional second and third core systems have little effect upon the response
of the structure. Moreover, it is interesting to note that the response of the superstructure tends to increase when the 
impedance functions are more precisely simulated: this tendency is opposite to the one exhibited in the case where the 
yielding strength coefficient yk  equals 0.8. 
 It is concluded, therefore, that the accuracy of simulating frequency-dependent impedance functions may have 
different influences on the response of the structure, depending on, for example, the yielding strength of the structure. 
The natural frequency of the structural system and the types of input motions could be responsible for differences in the 
response. 
 
 
4. CONCLUSIONS 
 
In the present study, application examples of the Gyromass Element Method (GEM) are presented. More advanced 
techniques combining Type I and II models are also shown. The results of nonlinear analyses show the importance of 
accurate simulation of the frequency-dependent impedance functions by using GEM. 
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