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ABSTRACT :

In this work explicit expressions are presented to obtain the fundamental frequency and the circumferential
critical n* wave number for the longitudinal critical wave number m=1 for clamped-free vertical cylindrical
tanks partially filled with water. The hydrostatic pressure is taken into count, free surface motion is neglected
and dynamic pressure is considered like an added virtual mass. The solution is based upon an improved Flugge’s
shells theory that is solved by means of the use of covariants and contravariants modals forms. The liquid is
assumed as non-viscous and incompressible, and the coupling between the deformable shell and the liquid is
taken into count. The solution for the liquid velocity potential satisfies Laplace equation and the relevant
boundary condition. A regression model is used in order to fit mathematical results previously computed to
obtain two explicit expressions with excellent approximation compared with experimental data. The equations
are proposed for the case of steel tanks for a direct use in seismic analysis and design of storage tanks.
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1. INTRODUCTION

The dynamic features of cylindrical tanks are modified due to the presence of: hydrostatic pressure and inertial
forces produced by the fluid; and the behavior of the free surface. These effects introduce serious complications
in the seismic behavior’s analysis of the fluid-tank system. Cylindrical shells, partially filled or empty, show
vibration modes for different longitudinal m and circumferential n modes (Figure 1) that are related with their
respective natural frequencies wmn. In this work we propose a methodology and compare with another results
available in current literature to determine the fundamental frequency and the critical longitudinal numbers m
and circumferential n for clamped-free (CF) vertical cylindrical tanks partially filled with water.

There are many works related with the natural frequencies’ assessment for CF cylindrical shells and partially
filled with water. Chiba et al. (1984 and 1985) consider the effects of the hydrostatic pressure through the
nonlinear equations of Donnell’s shells theory which are solved by the Galerkin method; Koga and Tsushima
(1990) consider the hydrodynamic pressure like a virtual mass and neglect hydrostatic pressure; Mazlch et al.
(1996) uses finite element analysis and Lakis (1997) uses Sander’s shells theory with finite element analysis and
considers the free surface of fluid to solve the problem and calculate natural frequencies.

To solve this problem some authors use different shells theories sometimes including the contribution of the
fluid characteristics like: hydrostatic pressure, added virtual mass or free surface to determine natural
frequencies. Other authors relate the critical circumferential modes n* with fundamental frequency «* only for
empty tanks (Arango et al. 1989, Urrutia 1989, EI Mously 2003). However, there are not explicit expressions to
calculate de minimum frequencies or critical circumferential modes for clamped-free tanks partially filled with
fluid.
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Figure 1 Natural frequencies and modal forms. Longitudinal “m” and circumferential “n” modes

Urrutia (1989) shows the invariance of the universal parameter (wm, r)* and this opens up a way to find the
different relationships between all the parameters (for empty tanks): geometrics (longitude L, radio r and
thickness h) with critical parameters «*, m and n*, which are the fundamental frequency and critical
circumferential modes.

The fluid, governed by Navier-Stokes equations, is considered, like an incompressible and irrotational fluid. The
influence of the fluid in the shells motion equations is included in the dynamic pressure equation and is
introduced like an “added virtual mass”. The dynamic pressure equation, that provided the fluid on the
cylindrical wall, neglected the free surface variation.

The main idea of this work is to present two expressions, obtained by a regression model, which can be use to
make the analysis and pre design of the vertical cylindrical tanks considering the fundamental frequency and the
longitudinal and circumferential critical waves. Besides, we provide an applied methodology to shell theory that
results in a simple mathematical model that allows to obtain the natural frequencies of a CF vertical cylindrical
tanks partially filled with water.

2. FLUID-TANK SYSTEM. MATHEMATICAL MODEL

The variables to determine the natural frequencies for the longitudinal mode m and circumferential mode n of a
cylindrical shell, where the walls of the shell are subjected to initial stresses by the hydrostatic pressure of the
fluid are: the radio r, the height L, the constant thickness h, and the height of flow d in a partially filled tank
(Figure 1).

For the initial conditions of the shell it is necessary to consider the dynamics equations which include initial
stresses on the shell wall (hydrostatic pressure). The terms that consider the initial stresses are those that in
elastic stability are called parametric terms (Urrutia, 1984). For the vibration analysis it is necessary to consider
dynamic pressure like a virtual added mass.
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Finally, the mathematical model (MM) for the fluid-tank system (FTS), expressed in matrix notation, is

Lll + L11+ C()ZTZ le L13 + Ll3 u 0
Ly, Ly, + L2+ @?c? Lys + Los v (=0 (2.2)
L3l + L31 L32 + L32 L33 + L33_a)2T2}/ w 0

2.1. Dynamics equations of shell

When a cylindrical tank is not submitted to some kind of external pressure, the terms L; are those of the

equations of Flugge (1973). However, when the tank is partially filled, the parametric terms due to the
hydrostatic pressure (Urrutia, 1984) appear as follows
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2.2. Dynamic pressure

For a rigid bottom tank the fluid is considered as non viscous and irrotacional, and the potential function that
satisfies the Laplace's equation is

$=DD " A5 (M p) cos(m;,2) cos(n ) (2.3)
m n
where m is the longitudinal number mode and n is circumferential number mode and where the free surface
motion is neglected.

The condition that considers coupling between the deformable shell and the liquid, is the boundary condition for
the radial velocity

o9 _ow 2.4)
opl,q4 Ot
and we obtain the function
2iaﬁia)t d
At)p =———— F, (1 d 2.5
O = o 12 o) 1 | Pl Ieos(maz i 25)
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By neglecting the effect of the free surface (sloshing), we accept that sloshing pressure is zero as follows

0
/Of*¢

o =0 (2.6)

z=d

Finally, the pressure equation on the shell wall where p=r, leads to the following conditions
Py = a)ZZZZWkn p, cos(ngp'* (2.7)
m n Kk

with

d

21, (m,r)cos(m,,z) ( P ]

Py =P ; F,, (A z)cos(m,z )dz y=[1+7 (2.8)
b dm, 1 (mr) ! (Ac2)cos(my2)d Pe

where the quotient (p,/p.) defined by Kwak and Kim (1991), is the virtual added mass factor, p, is the
virtual mass of the fluid-tank system, p, is the fluid density, and 1,(m,r) is the modified function of Bessel

of the first kind and first order n. Virtual mass p, is different to those presented by Koga et al. (1990), who

only presented results for natural frequencies when the tank is full or empty. The case of tanks partially filled
with water is avoided.

2.3. Covariant and contravariant functions method

There are many methods to uncoupling the system equations of the fluid tank system, in this work we use
covariant and contravariant functions (Urrutia, 1992). The displacement field u, v, w are proposed to satisfy
boundary conditions for the shell CF

u= ZZumn F, (A,z)cos(nde'
V= ZZanFV (Ayz)sen(nd)e'™ (2.9)
W= D" Wy Fy (An2) cos(nO)e™

Inner product of functions is used in the motion equations where contravariant functions U, V, W are orthogonal
to covariant functions u, v, w, and should be satisfied

<u,U>:JAJ‘uUdS:umn (V,V)=vy, (W, W) =W, (2.10)
S

and the fluid-tank system becomes
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(Ln +Lu+ a)zeru + L12v+(L13 + L13]W},U>: 0

(L:ﬂ + le]u + (L32 + Lszjv + (L33 + L33— a)zrzy]w},w> =0

This is a set of equations where the matrix determinant only depends on the value of the natural frequency @ of
fluid-tank system.

|/\|/\

|/\

(2.11)

3. EXPERIMENTAL DATA

With the purpose to compare the theoretical fundamental frequencies associated to its critical circumferential
modes (from the mathematical model of this study) with the experimental data studies, we present the
experimental studies from Mazlch et al. (1996) and Mistry et al. (1995) for steel cylinders with different
geometric characteristics. Cylinders, C1 to C4, with fundamental frequencies, geometric and mechanical
characteristics are presented in the Table 3.1.

Table 3.1 Experimental fundamental frequencies (Exp), m=1, steel

C1 Cc2 C3 c4
Mazuch etal. 1996 Mistry etal. 1995  Mistry etal. 1995  Mistry et al. 1995
L [mm] 231 280.1 3255 398
r [mm] 77.25 99.325 99.41 99.58
h [mm] 15 0.65 0.82 1.16
E [N/mm2] 2.05E5 2.05E5 2.05E5 2.05E5
pc [Ns2/mm4] 7.8E-9 7.75E-9 7.75E-9 7.75E-9
d/L o* [HZ] n* o* [HZ] n* o* [HZ] n* o* [HZ] n*
0 616 3
0.5 276 4
0.697 522 3
0.7 213 3
0.8 190 3
1 388 3

4. THEORETICAL RESULTS

To determine the fundamental frequency «* of a cylindrical tank, is necessary to solve the fluid-tank system for
the first critical longitudinal mode (m=1) and different circumferential waves n, being the minimum frequency
the fundamental one that is associate to the critical circumferential mode n*.

Real cylinders are analyzed and the absolute error between mathematical model results and experimental data
are presented in Table 4.1. These differences show an excellent approximation for the water level dimensionless
parameter d/L. The error in the theoretical result for the water level d/L is due mainly to the virtual mass given
by Egn. 2.8. This last equation presents a very good convergence in the mathematical model results. The
excellent approximation that we get with the mathematical model allows inferring that the free surface terms in
the fluid-tank system are not significant for the fundamental frequency assessments.
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Table 4.1 Fundamental frequencies MM, m=1, steel

C1 Cc2 C3 C4
d/L o*[Hz] e[%] w*[Hz] e[%] w*[Hz] e[%] o*[Hz] e[%]
0 6721  +9.11
0.5 2826  +2.38
0.697 5093  -2.43
0.7 208.7  -2.03
0.8 180.9  -4.79
1 3962 +2.12

For a CF vertical cylindrical steel tank partially filled with water experimental data demonstrated that the critical
circumferential mode n* stay constant without importing the water level, and this is proven with the
mathematical model, like it is shown for the cylinders C1 to C4 in Table 4.2 where the experimental number
wave n* it is shown with its integer value and theoretical n* it is shown with her value between parenthesis (n*).

Table 4.2 Critical circumferential mode MM, m=1, steel

C1 C2 C3 C4

d/L n* e [%] n* e [%0] n* e [%] n* e [%]
0 3 0 4) (3) (3)
0.5 (3) 4 0 (3) (3)
0.697 3 0 (4) (3) (3)
0.7 3) (4) 3 0 (3)
0.8 3) 4) (3) 3 0
1 3 0 @ - @ - ® -

5. REGRESSION MODEL

From the results of the mathematical model a parametric analysis for the steel cylinders is carried out, in the
dimensionless parameters r/h and L/r from 50 to 1000 and from 1 to 10, respectively. In this intervals the
mathematical pattern leads to excellent convergence in the calculation of the fundamental frequencies in the first
way longitudinal mode m=1 and its corresponding critical circumferential wave number n*.

The regression model (RM) that is proposed was based from Arango’s work et al. (1989) who presented two
equations to calculated fundamental frequency and critical circumferential mode to simple supported horizontal
empty cylindrical shells. Those expressions are now generalized to calculate fundamental frequencies from
longitudinal mode m=1 and critical circumferential mode to CF vertical cylindrical steel tanks partially filled
with water.

The mathematical model is calibrated by multiple regression analysis by a minimal square method that gives
Eqgns. 5.1 to determine fundamental frequency and critical circumferential mode, with an accuracy factor
R?*=0.990 and R*=0.908, respectively

- XS (A A N O (4 R
e wrieins G et L

where mechanical characteristics of steel are the elasticity module E, mass density o, and Poisson module v.

To compare how regression model, Egns. 5.1, fits with experimental data we present Tables 5.1 and 5.2, and
show fits the error between both models. The regression model for the fundamental frequencies has an excellent
accuracy with experimental data because the maximum absolute error is 11.01%. Therefore we propose to use
them to calculate fundamental frequency and circumferential mode to predesigned CF vertical cylindrical steel
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tanks partially filled with water comparing in a direct way against the amplitude frequencies accelerogram.

Table 5.1 Fundamental frequencies RM, m=1, steel

C1 Cc2 C3 C4
diL o*[Hz] e[%] o*[Hz] e[%] o*[Hz] e[%] o*[Hz] e[%]
0 69223 +11.01
0.5 276 -7.53
0.697 515.62  +1.24
0.7 213 +3.00
0.8 190  +0.57
1 41073  +553
Tabla 5.2 Critical circumferential mode RM, m=1, steel
C1 Cc2 C3 C4
d/L n* e[%] n*[Hz] e[%] n*[Hz] e[%] n*[Hz] e[%]
0 3 0
0.5 4 0
0.697 3 0
0.7 4 3333 -
0.8 3 0
1 3 0

It would be necessary to call more experimental data to improve the regression model and verify if the equations
of the regression model uniformly converge where mathematical model does not converge.

6. CONCLUSIONS

Mathematical model are presented to determine the natural frequencies of CF vertical cylindrical tanks partially
filled with water obtained from the improved Flugge’s equations uncoupled with the covariant and contravariant
modal forms. The model includes initial stresses terms because of the hydrostatic pressure and dynamic pressure
is consider like a virtual mass where free surface influence and the nonlinear thin shells theory effects are
neglected.

From the approximation of the mathematical model to the fundamental frequency «* and the critical
circumferential mode n*, it can be observed that the proposal virtual mass equation presents an excellent
approximation for the different water level d/L, so is possible to neglect the terms influenced by the free surface
in the fluid-tank system equations.

Staring from experimental data and the mathematical model we propose an explicit expression from a regression
model for the fundamental frequency @* and an expression for the critical circumferential mode n*. The
regression models given by Eqgns. 5.1 present a good approximation with the literature experimental data. So it
can be used to determine the fundamental frequencies w* and critical circumferential modes n* with a simple an
accurate calculation to predesigned CF vertical cylindrical steel tanks partially filled with water comparing in a
direct way against the amplitude frequencies accelerogram.

Once we have more experimental data is necessary to include them for extend the study and confirm the
precision of the mathematical model and regression model. With a higher amount of numerical simulations is
possible to obtain a general equation from the regression model for the fundamental frequencies calculus for any
kind of shell’s material.
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