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ABSTRACT: 
 
This paper examines the sensitivity of computed seismic system demands to modeling choices made at the 
material level. Accurate constitutive models of the constituent materials in a reinforced concrete (RC) section, 
namely, unconfined concrete, confined concrete and reinforcing steel are necessary for direct use in fiber-section 
discretization of RC components. The characteristics of the cyclic constitutive model can also directly influence 
the efficiency and accuracy of the element model used in the analysis. An additional aspect of modeling 
sensitivity resulting from ground motion characteristics, in the context of material model sensitivity, is also 
explored in the study. A series of numerical simulations of a typical ductile RC frame building is conducted with 
a view to gaining additional insight into response sensitivity resulting from modeling choices at the material 
level. Results of the simulations indicate that proper choice of parameters representing the behavior of confined 
concrete and the post-elastic behavior of reinforcing steel can influence the computed inelastic response of RC 
structural systems. 
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1. INTRODUCTION 
 
The need for improved analytical tools to predict the inelastic response of reinforced concrete (RC) structures 
for performance-based seismic evaluation have led to advances in modeling the inelastic behavior of RC 
components. Fiber-based discretization of a section is one such advancement that permits consideration of 
dynamic axial force-moment interaction. Since the response of the element based on fiber discretization of the 
cross-section is controlled primarily by section behavior, two issues need to be dealt with to ensure a reliable 
response: modeling of the constitutive behavior of the constituent materials and integration of the section 
deformations to yield component deformations. The latter aspect of fiber-section modeling is beyond the scope 
of this paper. The focus of this study is on the relevance and significance of constitutive modeling in the overall 
scheme of nonlinear response prediction of RC structures using section-based element discretization. Some 
work has been undertaken to examine the sensitivity of hysteretic models on seismic demands (Lee et al. 1999, 
Riddell et al. 2002). However, very few researchers have carefully examined the consequences of using different 
constitutive models in nonlinear simulations wherein the element model is based on a sectional discretization. A 
systematic analytical study was therefore carried out to examine the significance of constitutive models in the 
context of inelastic response prediction of RC structures. 
 
   
2. CONSTITUTIVE MODELS 
 
An elemental cross-section in an RC member is composed of three types of materials: unconfined concrete, 
confined concrete and reinforcing steel. All reinforced concrete components are detailed with transverse steel 
which provide both shear resistance and confining action. The confining effects of transverse steel are 
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considered implicitly by modifying the stress-strain response of the core concrete. Numerous researchers have 
developed stress-strain models of confined concrete based on observed experimental behavior. The concrete 
cover will typically spall at relatively small strain levels therefore the modeling of unconfined concrete is 
generally not critical for damage limit states in the inelastic range. The response of RC components and 
consequently the system is a function of the behavior of the confined core and the longitudinal steel. In the case 
of non-ductile sections, the response of the core will be only marginally different from the response of the cover 
concrete. Hence this study will focus primarily on structures with ductile detailing. 
 
 
2.1. Confined concrete modeling 
 
Confinement models have been developed by numerous researchers to describe the stress-strain behavior of 
concrete as a function of certain key parameters that are related to the amount and type of transverse 
reinforcement.  Given the large number of confined concrete models in the literature, only two representative 
models were selected for this study.  The first is the widely used and often referenced model for predicting the 
strength of confined concrete proposed by Mander et al. (1988): 
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where ccf ′  is the maximum strength of the confined concrete, cof ′  is the corresponding unconfined strength, Lf  is 
the effective lateral confining pressure. The constants that appear in the Eqn. (2.1) were obtained from empirical 
calibration of experimental data. The second confinement model considered in the study is taken from 
Hoshikuma et al. (1997):  
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In the above expression, sρ and yhf are the volumetric ratio and yield strength of the hoop reinforcement, 

respectively. The only remaining parameter of significance to complete the confinement model is a description 
of the failure (crushing) strain in compression. Of some relevance also is the post-peak response of the material.  
Though several equations have been proposed for the descending portion of the stress-strain curve, a linear 
approximation is generally adequate. Though Mander’s stress-strain equation is valid in the softening region, a 
linear relationship is used in this study due to the limitation of the concrete constitutive model used in the 
nonlinear simulations. 
 
For the purpose of this study, a similar form of the stress-strain curve is used for both unconfined and confined 
concrete (Figure 1a) characterized by an initial ascending branch up to the maximum compressive strength, cf ′  
(which is either cof ′ or ccf ′ depending on whether unconfined or confined concrete properties are used) followed 
by a linear descending branch up to the residual strength. It is also the base concrete model implemented in 
OpenSEES (2008), the nonlinear simulation platform used in the analytical studies reported herein. Also, the 
computed stress-strain curves, using the confined models described above, for a typical column and a typical 
beam for the case study presented later in this paper are plotted in Figures 1b and 1c.  
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 (a) (b) (c) 

Figure 1 Modeling of unconfined and confined concrete  
(a) General stress-stain model; and computed confined properties for (b) typical column; (c) typical beam 

 
 
2.2. Modeling of reinforcing steel bars 
 
A review of the literature on nonlinear modeling of reinforced concrete structures using refined fiber-section 
discretization reveal that little attention has been paid to detailed or refined models for reinforcing steel. 
Typically, an elastic-perfectly-plastic or bilinear model is used to represent the stress-strain response of the main 
longitudinal steel bars.  In this investigation, three material models are considered: a simple bilinear (referred to 
as Steel01 in this paper) model (Figure 2a), a smooth formulation (referred to as Steel02) with control 
parameters to specify hardening (not shown in Figure), and a more refined model (Figure 2b) referred to as 
“Reinforcing Steel” (RS) - all three models are available in OpenSEES (2008). The BL model is characterized 
by an initial elastic modulus, sE , a yield stress, yf , and a post-yield modulus defined by the strain hardening 
parameter, b , as shown in Figure 2b. For cyclic loading, the elastic modulus is used for unloading and reloading. 
Model Steel02 is similar to the bilinear model but allows a smooth transition from elastic to inelastic state using 
the well-known Menegotto-Pinto (1973) model. Additionally, the control parameters for hardening can be 
assigned negative values to induce softening. On the other hand, the Reinforcing Steel model represents an 
advanced model with features to characterize complex degrading effects. The backbone curve of the RS model 
is developed from the base model proposed by Chang and Mander (1994) and includes a yield plateau and strain 
hardening. The model also includes parameters to consider strength degradation and buckling. The parameter 
controlling strength degradation behavior can be calibrated to the well-known Coffin-Manson coefficients 
(Kunnath, Heo, and Mohle 2009). A qualitative description of the model showing both degradation and buckling 
is depicted in Figure 2b. 

 
 
 (a) (b) 

Figure 2 Cyclic stress-strain response for reinforcing steel (a) Steel01 model; (b) Reinforcing steel model  
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3. SIMULATION OF SYSTEM RESPONSE 
 
The sensitivity of constitutive models is investigated at the system level by considering the seismic evaluation 
of a twelve-story moment-resisting RC frame. The frame was designed to meet the requirements of IBC-2000 in 
a region of high seismicity. Essential details on the frame configuration including reinforcement details are 
listed in Table 1. While there may be other factors that also contribute to the sensitivity of the response, the 
results presented here are primarily those resulting from sensitivity to material modeling.  

 
 

3.1. Simulation Models 
 
The numerical simulations of the dynamic response of the frame to seismic loads were carried out using the 
open-source computational platform, OpenSEES (2008). A reinforced concrete member is modeled as an 
inelastic beam-column element with distributed plasticity.  The concrete section was discretized into 3 fibers in 
each cover region and uniform fibers of 10 mm in the confined core region. The cover concrete was modeled 
using unconfined properties while the core concrete was modeled with properties obtained from the different 
confinement models presented previously. The behavior of the reinforcing steel in the section was modeled with 
the three different material models discussed in Section 2.2.  
 
Table 3.1 Configuration and reinforcement details of representative multistory frame 

 
 

5 bays with bay width of 24 ft 
Story Height of 12 ft 

 Column Beam 
Story Section Reinforcement Section Reinforcement 

1 38 38×
Long. 24#11 

38 34×  
Long. 18#10 

Trans. #3@4 Trans. #3@9 

2-4 38 38×
Long. 24#11 

38 34×  
Long. 20#10 

Trans. #3@4 Trans. #3@9 

5-7 34 34×
Long. 20#10 

34 32×  
Long. 18#10 

Trans. #3@4 Trans. #3@8.5

8-10 32 32×
Long. 16#10 

32 32×  
Long. 18#9 

Trans. #3@4 Trans. #3@8 

11-12 28 24×
Long. 16#8 

28 24×  
Long. 20#8 

Trans. #3@4 Trans. #3@7 
 
 
3.2 Results of numerical study 
 
A number of simulations were carried out using numerous earthquake records and only a relevant set of results 
highlighting the general findings of the investigation is described herein. Table 3.1 presents the essential details 
of all the selected records used in the study. In order to induce significant inelastic action in the frame, each 
record was scaled to produce roof drifts on the order of about 2%.  The final scale factors are also provided in 
the table. In each simulation, a different combination of concrete and steel material model was considered – 
therefore, for each record, a set of nine simulations were carried out. Additional simulations were required when 
comparing the combined influence of material and element models. 
 
3.3.1 Sensitivity to Material Models 
 
The choice of a constitutive model to describe the cyclic stress-strain characteristics of the core concrete and 
reinforcing steel is investigated in this phase of the study. As discussed previously, the inelastic action in an 
element is controlled primarily by material behavior when employing a fiber model discretization of the cross-
section.  The numerical simulations using different confinement models for concrete and different constitutive 
models for reinforcing steel is shown in Figure 3.  
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Table 3.2 Ground Motion Details 

EQ. 
ID EQ. Name Year Station PGA (g) File name Scale  

factor 

EQ1 Cape Mendocino 1992 Petrolia 0.66 PET090.AT2 2.0 

EQ2 Northridge 1994 Sylmar - Converter Sta. East 0.49 SCE288.AT2 2.0

EQ3 Imperial Valley 1979 El Centro Array #7 0.46 H-E07230.AT2 2.0 

EQ4 Northridge 1994 Rinaldi Receiving Sta 0.84 RRS228.AT2 1.0

EQ5 Superstition Hills 1987 Parachute Test Site 0.45 B-PTS225.AT2 1.3 

EQ6 Northridge 1994 Newhall W Pico Canyon Rd. 0.45 WPI046.AT2 1.5

EQ7 Chi-Chi, Taiwan 1999 TCU052 0.42 TCU052-N.AT2 1.2 

EQ8 Kobe, Japan 1995 Takatori 0.62 TAK090.AT2 2.0 
 
The variability in the response is also a function of the ground motion, however, substantial differences were 
noted in several simulations and the results presented in Figure 3 are a representative sample.  The drifts shown 
in Figure 3a corresponds to cases in which the concrete core in both beams and columns was modeled either as 
unconfined or confined while those in Figure 3b considers the effect of different steel models.  For the case 
investigating the effect of confined concrete models (Figure 3a), Steel02 was selected as the reinforcing steel 
model with a post-yield stiffness of 1%.  For the case (Figure 3b) comparing different steel models, concrete 
was modeled using Mander’s confinement model. Hence the variation shown in the figures is primarily due to 
the effect of changes in either concrete or steel. 

 
 (a) (b) 

Figure 3 Variation in computed drift demands for different material models: 
(a) Sensitivity to confined concrete models (EQ5); (b) Sensitivity to reinforcing steel models (EQ8) 

 
In the above simulations, the effective post-yield stiffness of the steel material was fixed at 1% of the initial modulus. 
To examine the consequence of changing the post-yield stiffness, the simulation presented in Figure 3b was re-run 
using a post-yield stiffness of 2% (for the case of Steel02).  A significant change in computed demands is observed as 
shown in Figure 4a. Next, the control parameter for material hardening was modified to introduce slight degradation 
in the cyclic response.  The difference in response for a sample simulation (due to EQ7) is shown in Figure 4b. 
Concrete02 with Mander’s confinement model was used for simulating the behavior of concrete in both cases. 
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 (a) (b) 

Figure 4 Variation in computed drift demands for same steel models with different control parameters: 
(a) Sensitivity to post-yield stiffness; (b) Effect of material degradation (a<0.0) 

 
Similarly, the choice of model parameters for specifying the behavior of confined concrete can be complicated 
by other factors, such as the characteristics of the ground motion or the details of the cyclic constitutive model.  
Figure 5a and Figure 5b show the computed drift demands using the same set of model parameters for two 
different ground motions. Results in Figure 5a suggest that both the Mander model and Hoshikuma model 
produce similar results thereby leading to the conclusion that the modeling of concrete confinement is not 
important or that the response is not sensitive to the choice of confinement models. However, changing the 
earthquake record (Figure 5b) produces a dramatically different response with the predicted peak demand 
changing by as much as 50%. Likewise, if the description of the cyclic behavior is changed, the predicted 
demands also change. As demonstrated in Figure 5c, the concrete model that incorporates tensile strength 
(Concrete02) produces demands that are approximately 60% higher on the 5th and 6th floor while the model that 
ignores tension results  (Concrete01) results in even higher differences on the 8th and 9th floor.   
 

   
 (a) (b) (c) 

Figure 5 Variation in computed drift demands for same steel models and different concrete models: 
(a) - (b) Sensitivity to ground motions (EQ5 vs. EQ4); (c) Sensitivity to concrete models 

 
 
 



The 14
th 

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 

3.3.1 Sensitivity to Element Models 
 
In this phase of the study, demand sensitivity to material models is investigated in the context of element models. 
Response sensitivity and loss of objectivity using force-based element models have been addressed by Coleman 
and Spacone (2001) and Scott and Fenves (2006). Since deformations localize at a single integration point rather 
than across an entire element in force-based elements, the response changes as a function of the number of 
element integration points rather than as a function of the element length. In this study, however, the central 
issue being investigated is the impact of material characteristics and the parameters controlling the material 
response in an overall inelastic analysis. However, these issues are also interlinked.  
 
The simulations presented thus far were based on a flexibility based element with distributed plasticity. Another 
common approach to modeling RC members is to assume a fixed plastic hinge zone at locations of expected 
inelasticity. The particular element considered in this study is the beam-with-hinges element implemented in 
OpenSEES which employs four integration points: two end-points at the ends of the element and two interior 
points. A complete description of the element formulation is reported by Scott and Fenves (2006).  First, the 
computed responses are compared in Figure 6a for the case of the distributed plasticity element (labeled as 
Nonlinear in the figure) with 4 integration points and the beam-with-hinges element (labeled as Hinge) with a 
fixed plastic zone equal to the depth of the section. Next, model sensitivity at the element level is examined by 
varying the number of integration points (from 4 to 7) for the case of the fully distributed plasticity model and 
by changing the length of the plastic hinge (either the depth of the section or 10% of the element length). The 
resulting responses for the latter two cases are shown in Figures 6b and 6c, respectively.  The variations 
considered in these simulations are not extreme values, rather they are typical parameters used by researchers 
and engineers in nonlinear simulations. 
 

   
 (a) (b) (c) 
Figure 6 Variation in computed drift demands for same earthquake (EQ08), steel (Steel02) and concrete (Concrete 02 
with Mander’s confinement model) models: (a) Sensitivity to element models (b) Sensitivity to number of integration 

points (c) Sensitivity to the length of plastic hinge zone 
 

 
CONCLUDING REMARKS 
 
The findings in this paper highlight one aspect of inelastic seismic demand that has not received much attention.  
The advent of pushover and nonlinear dynamic analysis in performance-based seismic engineering require 
knowledge of nonlinear procedures and an understanding of model sensitivity.  The results of the investigation 
in this study indicate that the choice of material models and the control parameters that define cyclic stress-
strain behavior can produce significant differences in the computed drift demands in buildings. Such 
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discrepancies – resulting both from record-to-record variability and differences in modeling – are difficult to 
interpret.  What is evident is that material models play an important role in demand estimation and particular 
attention should be given to properly calibrating these models prior to their use is seismic evaluation studies. 
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