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ABSTRACT : 

Accurate estimation of the seismic response of structures is an important issue in aseismic design. Under 
earthquake excitations, the deformation and internal force distributions of structures are quite complex. This is
particularly true for irregular structures under multiple directional seismic loads. In most current engineering 
practice, only those response quantities which are linear combinations of the nodal displacements are
considered to be critical for design. However, this may not always be the case, especially for those systems
enhanced with high damping devices. For example, the relative nodal velocities are important for the design of
the dampers and the nodal absolute accelerations determine the strength demand of the nonstructural
components. This paper presents a time-history-based formulation of the responses for generally damped linear 
systems excited by multiple directional seismic loads through modal analysis. Solutions to the structural nodal 
displacements, the nodal velocity and absolute acceleration responses are derived. It is shown that the modal
response quantities required in the nodal velocity and absolute acceleration are identical to those that are
required in the structural displacement responses. Moreover, most response quantities of interest for seismic 
evaluation and design can be obtained through the linear transformation of the structural displacement, velocity
or absolution acceleration as long as the structure remains in the elastic range (e.g. inter-story drift, story shear, 
nodal relative velocity, floor acceleration, etc.). A unified form capable of representing these response 
quantities is therefore established. 
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1. INTRODUCTION 
 
Generally damped linear systems are those dynamic linear systems with non-classical damping mechanism 
and/or with over-damped modes. This type of systems is often seen when structures are enhanced with added
damping devices. At present, most modal design and analysis approaches for structures with added damping 
devices subjected to seismic excitation are performed by using two-dimensional (2D) model with 
uni-directional loading (Trall-Nash 1981, Veletsos and Ventura 1986, Zhou et al. 2004 and Song et al. 
2008a,b). The 2D models with uni-directional excitation cannot deal with the spatially coupling effects between 
motions in perpendicular directions and the torsional responses. Also, the correlations between ground motion
components are not considered, yet they may be of significance to structural responses. In current codes (e.g. 
Caltrans 2004 and IBC 2003), in order to allow the extra responses resulting from the multiple excitations, a
30% or 40% rule arising from the orthogonal effects is applied. The safety margin of the percentage rule has not
been examined through careful studies. It is used simply because the required computational effort is rather
prohibitive and, at the same time, there has been a lack of knowledge necessary to formulate a simple, rational
approach. Also, the discussion of the response quantity is generally limited to the structural nodal
displacements. As complex structural systems become more popular, it is necessary to design and analyze the
structures using three-dimensional (3D) model subjected to multi-components earthquake excitations and 
consider more response quantities, in addition to displacement in order to achieve safer design. As a result, the 
applicability and feasibility of the currently used modal analysis approach need to be further examined. 
Stemmed from the previous study of the authors (Song et al. 2008a,b) on 2D generally damped structures 
subjected to uni-direction ground excitation, this paper is specially engaged in establishing the theoretical base
of modal analysis approach for 3D generally damped linear structures subjected to multiple excitations, from 
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which a unified form able to represent most structural response quantities of interest is derived. 

 
Figure 1  3D MDOF structure subjected to 3-component ground motion 

 
2. FEATURES OF 3D GENERALLY DAMPED SYSTEMS 
 
For a 3-Dimensional (3D) discrete generally damped linear structure with N degrees-of-freedom (DOF) 
subjected to a three-component ( )g tu ( 3∈R -- belongs to 3-dimension vector in real field) as shown in Fig. 1, 
the motion of the structure is governed by 

 ( ) ( ) ( ) ( ) Nt t t t+ + = ∈Mu Cu Ku f R  (1) 

in which N N×∈M R , N N×∈C R  and N N×∈K R are the mass, viscous damping and stiffness matrices,
respectively. 

x y z

T T T T T T T
x y z θ θ θ( ) [ ( ) ( ) ( ) ( ) ( ) ( )] Nt t t t t t t= ∈u u u u u u u R  is a generalized displacement vector 

representing the translational and rotational DOFs for each node. ( ) ( ) N
gt t= − ∈f MJTu R and 

( ) ( ) ( ) 3[ ] N×= ∈x y zJ J J J R is the influence matrix, which contains three resultant displacement vectors of the
mass to a static application of a unit ground displacement along three structure reference axes X, Y and Z, 
respectively. T

g g1 g2 g3( ) [ ( ) ( ) ( )]t u t u t u t=u is the acceleration vector consisting of three orthogonal

components along reference axes 1, 2 and 3, respectively. 3∈T R  is a transformation matrix and has the from 
of 

 
cos sin 0
sin cos 0

0 0 1

θ θ
θ θ

−⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

T  (2) 

When the structure is generally damped, it cannot be decoupled in the N dimensional physical space. As a 
result, it is necessary to use the 2N dimensional state space to perform the eigen analysis. Namely, Eq. (1) can 
be cast into a set of first-order linear equation as given by 

 2
S( ) ( ) ( ) Nt t t+ = ∈Av Bv f R  (3) 

where ( ) ( ) { } { }2 22 2 2 2
S

( )( ) ,   ( ),   ,   ( ) ( )
N NN N N N tt tt t

× ×− = ∈ = ∈= ∈ = ∈ 0u0 M M 0 v fA B fuM C 0 K R RR R  (4) 

It can be shown that A  and B  are non-singular matrices for a completely constrained structure with non-zero 
nodal masses; that is, both 1−A  and 1−B  exist (Song et al. 2008a). Let λ∈C be an admissible eigenvalue. 
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Associated with each eigenvalue λ  is an admissible eigenvector 2N∈ψ C . The associated eigenvalue problem 
of Eq. (3) is given by 

 ( )A B ψ 0λ + =  (5) 

From the theory of linear algebra, the solution to the above eigenvalue problem leads to a set of 2N eigenvalues 
iλ  and 2N associated complex eigenvectors iψ . Normally, iλ  and iψ  appear in complex conjugated pairs, 

which will correspond to under-damped vibration modes. However, iλ  and iψ can also appear in real value, 
which correspond to over-damped modes. Suppose that there are CN  complex modes (simply termed as 
modes) and PN  over-damped modes in the system ( P2 2CN N N+ = ). As a result, the following eigenvalue (or 
spectral) matrix and eigenvector matrix can be formed 

 ( )C C P

* * * P P P 2 2
1 2 1 2 1 2diag , , , , , N N

N N Nλ λ λ λ λ λ λ λ λ ×= ∈Λ C  (6) 

 ( ) ( )
C P

* * * P P P 2 2
1 2 1 2 1 2, , , , , 

C

N N
N N N

×= = ∈ΦΛΨ ψ ψ ψ ψ ψ ψ ψ ψ ψ Φ C  (7) 

in which ( )C P

* * * P P P 2
1 2 1 2 1 2, , , , , 

C

N N
N N N

×∈Φ C= ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ , dji i i iλ ξ ω ω= − + , P P
i iλ ω= − and j= 1− is 

the imaginary unit.  and i iω ξ∈ ∈R R  are the ith modal frequency and modal damping ratio, respectively, 
2

d 1i i iω ξ ω= − ∈R  is the ith modal damped frequency and P
iω  is defined as ith over-damped natural circular 

frequency. The ith mode shape iϕ  can be represented as 
x y z

T
x y z θ θ θ[ ]i i i i i i i=ϕ ϕ ϕ ϕ ϕ ϕ ϕ , from 

which it can be observed that the modal motion is not limited to only one global reference direction. This
explains the spatial coupling phenomenon in the physical space. It can also be shown that the eigenvector 
matrix Ψ  can diagonalize the two system matrices A  and B (Chu 2008), leading to following two 
diagonal square matrices 

 ( )C C P

T * * * P P P 2 2
1 2 1 2 1 2ˆ diag , , , , , N N

N N Na a a a a a a a a ×= = ∈a A CΨ Ψ  (8) 

 ( )C C P

T * * * P P P 2 2
1 2 1 2 1 2

ˆ diag , , , , , N N
N N Nb b b b b b b b b ×= = ∈b B CΨ Ψ  (9) 

where T
i i ia = ψ Aψ , T

i i i i ib a λ= = −ψ Bψ , P P T P( )i i ia = ψ Aψ  and P P T P P P( )i i i i ib a λ= = −ψ Bψ  (10)   

2.1 Modal coordinate transformation 
 
Let the response vector 2( ) Nt ∈v R  be represented in the following transformation 

 { }( )( ) ( )( )
tt tt= =uv Ψwu  (11) 

where 
C C P

T* * * P P P 2
1 2 1 2 1 2( ) ( ),  ( ), ( ),  ( ),  ( ) ( ),  ( ),  ( ) ( ) N

N N Nt w t w t w t w t w t w t w t w t w t⎡ ⎤= ∈⎣ ⎦w C  (12) 

is the complex modal coordinate vector in the time domain. Using Eq. (11), the state space Eq. (3) can be 
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decoupled into a set of uncoupled 2N independent modal equations as 

 
T

C
( )( ) ( )      ( 1,2... )i

i i i
i

tw t w t i N
a

λ− = ∈ =
f Cϕ  (13) 

 
H

* * *
C*

( )( ) ( )      ( 1,2... )i
i i i

i

tw t w t i N
a

λ− = ∈ =
f Cϕ  (14) 

and 
P T

P P P
PP

( ) ( )( ) ( )      ( 1,2 )i
i i i

i

tw t w t i N
a

λ− = ∈ =
f Rϕ  (15) 

In Eq. (14), the superscript “H” denotes Hermitian transpose. After substituting the solutions of Eqs. (13) to 
(15) into Eq. (11), the structural displacement and velocity response vector can be expressed as 

 
C P

* * P P

1 1
( ) ( ) ( ) ( )

N N

i i i i i i
i i

t w t w t w t
= =

⎡ ⎤= + +⎣ ⎦∑ ∑u ϕ ϕ ϕ  (16) 

 
C P

* * * P P P

1 1
( ) ( ) ( ) ( )

N N

i i i i i i i i i
i i

t w t w t w tλ λ λ
= =

⎡ ⎤= + +⎣ ⎦∑ ∑u ϕ ϕ ϕ  (17) 

2.2 Structural residual matrices 
 
By taking the derivative with respect to time of both sides of Eq. (16), together with the use of Eqs. (13) to (15),
and equating the resulting form to Eq. (17), the following expression results 

 
C PT * H P P T

* P
1 1

( )( ) ( )
N N

N Ni i i i i i

i ii i i

t t
a a a

×

= =

⎡ ⎤ ⎡ ⎤
+ + = ∈⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑f f 0 Cϕ ϕ ϕ ϕ ϕ ϕ  (18) 

Since ( )tf  is arbitrary, it implies that 

 
C PT * H P P T

1 T
* P

1 1

( ) ˆ
N N

N Ni i i i i i

i ii i ia a a
− ×

= =

⎡ ⎤ ⎡ ⎤
+ + = = ∈⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑ a 0Φ Φ Cϕ ϕ ϕ ϕ ϕ ϕ  (19) 

Further, denote 

 
T

R Ij N Ni i
i i i

ia
×= + = ∈R R R Cϕ ϕ  , 

* H
* R I

C*j ( 1,2 )N Ni i
i i i

i

i N
a

×= − = ∈ =R R R Cϕ ϕ  (20) 

and                     
P P T

P
PP

( ) ( 1,2 )N Ni i
i

i

i N
a

×= ∈ =R Rϕ ϕ  (21) 

iR , *
iR  and P

iR  are referred to as the residual matrices corresponding to the eigenvalues iλ , *
iλ  and P

iλ ,
respectively. Eq. (19) shows an important property for a linear system, that is, the summation of all residual
matrices equal to the null matrix. Note that all residual matrices only depend on the structural system
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parameters and are independent of the normalization manner of the modes. 
 
2.3 Expansion of the inverse of the mass matrix 
 
Considering Eq. (4) and (7) in Eq. (9), 

 
T

T T T ˆ ˆ
−⎛ ⎞ ⎛ ⎞⎛ ⎞

= = − + = = −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

Λ M 0 ΛΦΦ Φ Φ ΦΨ BΨ Λ M Λ K b aΛΦ
Φ0 KΦ

 (22) 

If the masses at all N  structural DOFs are non-zero, M  is a positive-definite matrix and 1−M exists. From 
Eqs, (19) and (22), 1−M  can be expanded in terms of the system parameters as (Song et al. 2008a) 

 ( )
C P

1 1 T R I P P
d

1 1

ˆ 2
N N

i i i i i i i
i i

ξ ω ω ω− −

= =

= = − + −∑ ∑M a Λ R R RΦ Φ  (23) 

3. DEVELOPMENT OF THE UNIFIED FORM 
 
The seismic displacement and velocity responses have been given by Eqs. (16) and (17), respectively. However, 
it is noted that the modal responses ( )iw t , * ( )iw t  and P ( )iw t  are complex-valued and have no physical 
interpretations. In addition, the computation efforts for solving Eqs. (16) and (17) are demanding since they are 
complex-valued. Thus, responses expressed by the form shown in Eqs. (16) and (17) are not preferred. In the 
following, a unified formulation in terms of real numbers for most response quantities is developed. 
 
3.1 Displacement response 
 
With the help of the Laplace transform applied to Eqs. (11) to (15) and with certain simple manipulation of the 
resulting expressions, Eq. (16) in Laplacian form can be represented as 

 
C P P

D D D
g g2 2 2 2 P

1 1

( ) ( ) ( ) 
2 2

N N
i i Ni

i ii i i i i i i

s
s s s

s s s s sξ ω ω ξ ω ω ω= =

⎛ ⎞
= − + − ∈⎜ ⎟+ + + + +⎝ ⎠
∑ ∑

A B AU TU TU C  (24) 

in which R
D 2 N

i i= ∈A R MJ R , ( )R 2 I
D 2 1 N

i i i i i iω ξ ξ= − − ∈B R R MJ R , P P
D

N
i i= ∈A R MJ R . Further denote 

 3
g( ) ( ) ( )i is H s s= ∈Q U C  and 3

V V g( ) ( ) ( )i is H s s= ∈Q U C  (25a,b) 

where 2 2

1( )
2i

i i i

H s
s sξ ω ω

= − ∈
+ +

C and V 2 2( )
2i

i i i

sH s
s sξ ω ω

= − ∈
+ +

C  (26a,b) 

are displacement and velocity transfer function of a under-damped SDOF system with the ith modal damping 
ratio iξ  and the ith modal natural frequency iω , respectively. In fact, Eqs. (25a) and (25b) can be considered 
as the Laplace transformation of the displacement vector and the velocity vector governed by the following 
differential equation set expressed in the time domain with zero initial conditions, respectively  

 2
g( ) 2 ( ) ( ) ( )i i i i i it t t tξ ω ω+ + = −q q q u  (27) 
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where [ ]1 T 3
1 2 3( ) L ( ) [ ( ) ( ) ( )] i i i i it s q t q t q t−= = ∈q Q R  . Also, denote 

 P P 3
g( ) ( ) ( )i is H s s= ∈Q U C  (28) 

in which P
P

1( )i
i

H s
s ω

= − ∈
+

C  (29) 

Similarly, Eq. (29) is the Laplace transformation of the following first-order differential equation with zero initial 
condition. 

 P P P
g( ) ( ) ( )i i it t tω+ = −q q u  (30) 

where PP 1 P P T 3P
1 2 3

( )( ) L ( ) [ ( ) ]( )ii i i i
q tt s q t q t− ⎡ ⎤= = ∈⎣ ⎦q Q R  is the ith over-damped modal response vector. 

As a result, the inverse Laplace transform of Eq. (24) which is the displacement vector ( , )t θu  can be 
expressed as (Chu 2008). 

 
C P

P P
D D D

1 1
( , ) ( ) ( ) + ( )

N N

i i i i i i
i i

t t t tθ
= =

⎡ ⎤= +⎣ ⎦∑ ∑u A Tq B Tq A Tq  (31) 

The variable θ  is included in the expression to show that the response vector is also dependent on the seismic
incident angle θ , considered through the transformation matrix T . Unlike Eq. (11), it may be observed that 
the displacement responses can be expressed in terms of real-valued quantities. It is a linear combination of the 
modal displacement and velocity responses of a set of under-damped SDOF systems as well as those of a set of 
over-damped first order system subjected to three orthogonal ground motions. Also, from Eq. (31), it is clear 
that the modal structural response vector (including modal responses of all structural DOFs) for each mode 
consists of two terms which are related to the modal velocity response, D ( )i i tA Tq  and modal displacement 
response, D ( )i i tB Tq , respectively. Comparing Eq. (31) with the corresponding formula used for
classically-damped system (Clough and Penzien 1993), the former term is introduced due to the non-classical 
damping effect. Since the corresponding elements in the coefficient vectors DiA  and DiB for each mode may 
not be equal, the combined result of these two terms may shift the modal response phase along structural DOFs.
Thus, it can be concluded that when the structure is non-classically damped, the modal structural responses for 
all DOFs may not vibrate in phase or out of phase, which is different from the behavior appearing in a 
classically-damped system. In Eq. (31), the last term related to the over-damped modal response P P

D ( )i i tA Tq
are used to compute the modal responses contributed from the over-damped modes when they are present. 
 
3.2 Velocity response 
 
Intuitively, the structural velocity response vector can be obtained directly by taking derivative of Eq. (31) with 
respect to time variable t as  

 
C P

P P
D D D

1 1
( , ) ( ) ( ) + ( )

N N

i i i i i i
i i

t t t tθ
= =

⎡ ⎤= +⎣ ⎦∑ ∑u A Tq B Tq A Tq  (32) 

However, this formulation requires the incorporation of two additional modal responses ( )i tq  and P ( )i tq in 
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the expression. A different approach to derive the expression of the relative velocity vector is given as follows.
First, let us rearrange Eqs. (27) and (30), respectively, as  

 2
gg( ) 2 ( ) ( ) ( )i i i i i it t t tξ ω ω= − − −q q q u  (33) 

 P P P
g( ) ( ) ( )i i it t tω= − −q q u  (34) 

After substituting Eqs. (33) and (34) into Eq. (31), one will have 

 
( ) ( )

C P

C P

2 P P
D D D D

1 1

P
D D g

1 1

( , ) 2 ( ) ( ) ( )
N N

P
i i i i i i i i i i i

i i

N N

i i
i i

t t t tθ ξ ω ω ω
= =

= =

⎡ ⎤= − − + −⎣ ⎦

⎡ ⎤
− +⎢ ⎥
⎣ ⎦

∑ ∑

∑ ∑

u B A Tq A Tq A Tq

A A Tu
 (35) 

in which the last term vanishes after considering the summation of the residual matrices shown in Eq. (19), i.e.

 
C CP P

P R P
D D g g

1 1 1 1
2

N NN N

i i i i
i i i i= = = =

⎡ ⎤ ⎡ ⎤
+ = + =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ ∑A A Tu R R MJTu 0  (36)  

Therefore, the velocity vector ( , )t θu  can be expressed as 

 [ ]
C P

P P
V V V

1 1
( , ) ( ) ( ) + ( )

N N

i i i i i i
i i

t t t tθ
= =

= +∑ ∑u A Tq B Tq A Tq  (37) 

where V D D2i i i i iξ ω= −A B A , 2
DV i ii ω−= AB  and P P

V D
P

i i iω= −A A . 

Noted that Eqs. (32) and (37) are equivalent. However, Eq. (37) is preferred since the two additional modal 
responses ( )i tq  and P ( )i tq  do not appear in the expression and it has a consistent expression with the 
displacement vector ( , )t θu  shown by Eq. (31). It is worthwhile to point out that Eq. (37) can also be derived 
directly from Eq. (17) following the similar procedure for deriving Eq. (31). The final results including the
coefficient vectors, ViA , ViB  and P

ViA  are exactly same as Eq. (37), which is understandable because Eq. 
(19) is derived based on Eqs. (16) and (17). However, the currently adopted approach can bring out an extra
important property of the generally damped structural system that is shown by Eq. (36). 
 
3.3 Absolute acceleration response 
 
To derive the absolute acceleration vector, let us start from the relative acceleration, which can be obtained by 
taking derivative of the velocity vector ( , )t θu  with respect to time. As a result, we have 

 [ ]
C P

P P
V V V

1 1
( , ) ( ) ( ) ( )

N N
N

i i i i i i
i i

t t t tθ
= =

= + + ∈∑ ∑u A Tq B Tq A Tq R  (38) 

Substituting Eq. (33) and (34) into Eq. (38) leads to 
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C CP P

P P P
A A A V V g

1 1 1 1
( , ) ( ) ( ) ( ) ( )

N NN N

i i i i i i i i
i i i i

t t t t tθ
= = = =

⎡ ⎤
⎡ ⎤= + + − +⎢ ⎥⎣ ⎦

⎣ ⎦
∑ ∑ ∑ ∑u A Tq B Tq A Tq A A Tu  (39) 

where 2 P P P
A V V A V A V2 , andi i i i i i i i i i iξ ω ω ω= − = − = −A B A B A A A . 

Making use of the modal expansion of the inverse of the mass 1−M  shown by Eq. (23), the last term in Eq.
(39) becomes 

 
( )

C CP P
P R I P P

V V g d g
1 1 1 1

1
g g

( ) 2 ( )

( ) ( )

N NN N

i i i i i i i i i
i i i i

t t

t t

ξ ω ω ω
= = = =

−

⎡ ⎤ ⎡ ⎤
+ = − + −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
= =

∑ ∑ ∑ ∑A A Tu R R R MJTu

M MJTu JTu
 (40) 

Substituting the result of Eq. (40) into Eq. (39) and denoting the structural absolute acceleration vector as
A ( , )t θu , which can be expressed as A g( , ) ( , ) ( )t t tθ θ= +u u JTu , one obtains 

 
C P

P P
A A A A

1 1
( , ) ( ) ( ) ( )

N N

i i i i i i
i i

t t t tθ
= =

⎡ ⎤= + +⎣ ⎦∑ ∑u A Tq B Tq A Tq  (41) 

It is noted that the modal relative acceleration vector ( )i tq  and the ground acceleration vector g ( )tu  are not 
included explicitly in the expression of the absolute acceleration vector A ( , )t θu . 
 
3.4 A unified form for response expressions 
 
Comparing the expressions of the relative displacement, the relative velocity and the absolute acceleration 
vectors shown in Eqs. (31), (37) and (41), respectively, it may be observed that these three response quantities 
are the linear combination of the modal response ( )i tq , ( )i tq  and P ( )i tq . They only differ in their respective 
coefficient vectors. Thus, it is convenient to represent these three response vectors in a similar manner as 
follow. 

 
C P

P P
0 0 0 0

1 1
( , ) ( ) ( ) ( )

N N

i i i i i i
i i

t t t tθ
= =

⎡ ⎤= + +⎣ ⎦∑ ∑u A Tq B Tq A Tq  (42) 

In general, most response quantities, denoted as 0 ( , )r t θ , are either deformation-related, such as bending 
moments, inter-story drifts, shear forces etc., velocity-related, such as the inter-story velocity or absolute 
acceleration-related , such as the floor acceleration. As a result, most response quantities within the structure 
can be expressed by a linear combination of the response vector 0 ( , )t θu  through appropriate transformation. 
That is, 

 
C P

T T T T P P
0 0 0 0 0

1 1
( , ) ( , ) ( ) ( ) ( )

N N

i i i i i i
i i

r t t t t tθ θ
= =

⎡ ⎤= = + +⎣ ⎦∑ ∑d u d A Tq d B Tq d A Tq  (43) 

where d  is a transformation vector. This form is helpful in the formulation of a modal combination rule for
response spectrum method. 
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4. SUMMARY AND CONCLUSION 
 
A modal response history analysis approach for generally damped 3D linear structures subjected to multiple 
ground motion excitations is developed. In this approach, over-damped modes, if exist in the system, are taken 
into account for accurately evaluating the structural complete responses. In addition, the modal response 
combination formulation and the decoupled modal differential equations with first order and second order are 
expressed in real field and have clear physical interpretations. Also, a unified form capable of describing most 
response quantities of interest is established for multicomponent seismic analysis via the modal properties 
identified in this study. This unified form can be further used for the development of the 
response-spectrum-based analysis method for generally damped 3D linear structures, which has been performed 
by the authors (Song et al. 2008a and Chu 2008). 
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