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ABSTRACT: 

To consider the influence of substructure’s nonlinear driving force on primary structure, an improved dynamic 
analytic model containing dynamic stiffness is presented, and it is solved by means of Lindstedt-Poincaré 
method (L-P). Analysis on amplitude versus frequency based on arithmetic solution and catastrophe theory 
shows that small changes of system parameters may cause remarkable changes of amplitude, amplitude 
catastrophic value and unstable region of system response. It means that the response behaviors of system are 
very sensitive to the variation of system parameters. The longer suspender the smaller nonlinear parameter, and 
catastrophic behavior of system disappears and pseudo-linear behavior arises. 

KEYWORDS: suspended structure, nonlinear restoring force, catastrophe, dynamic response, pseudo-linear 
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1. INTRODUCTION  

To reduce the seismic response of structures, the masses are suspended on one or more floors, or the whole 
stories of structure are suspended. As a new structural system with quality damping performance, suspended 
structures have been concerned increasingly by construction engineering. Theory analysis and practice show 
that the sub structure and hinge bar respond as gravity pendulum around the suspension centre, when they are 
excited by exciting force. The restoring force of pendulum depends on gravity stiffness of it. Some complex 
dynamic behaviors of suspended structures excited by earthquake, such as catastrophe and hysteresis, are caused 
by nonlinear action [1-4]. The existing method to study suspended structure is to simplify it as gravity pendulum 
and elastic staff model without considering nonlinear restoring force of sub structure, and cannot describe some 
nonlinear behavior above [5,6]. Therefore, the existing dynamic model is improved by including nonlinear 
restoring force in this paper. The stable solution of dynamic response of suspended structure is derived by means 
of Lindstedt-Poincaré method (L-P), and then the calculation results of amplitude-frequency response and its 
catastrophic complexity analysis are presented. Analysis shows that small changes of system parameters may 
cause remarkable changes of amplitude catastrophic value. It means that the behaviors of system response are 
very sensitive to the changes of system parameters. On the other hand, the catastrophic behavior disappears and 
the pseudo-linear behavior arises in the case of longer hinge bar. The results obtained in the paper are of 
significant value to the design of suspended structures.  
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2. DYNAMIC MODEL OF SUSPENDED STRUCTURE 

Suspended structures consist of mega structure, sub structure and suspender, depicted in figure 1. The mass of 
mega structure is concentrated to the beam, and the beam is simplified as translational mass rigid body. Sub 
structure is simplified as gravity pendulum and the pendulum length equal to suspender, depicted in figure 2 (a). 
Based on d'alembert's principle, the dynamic equations of suspended structure system are 
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Where gx is the displacement of ground; 1x the displacement of mega structure relative to ground; 2x the 
displacement of sub structure relative to mega structures; 1k lateral rigidity of mega structures; g the gravity 
acceleration; 1m and 2m the lumped mass mega and sub structures. 

         

                         Figure 1 Schematic structure                                   Figure 2 Mechanical model 

To make pointed analysis on impact of substructure's nonlinear restoring force on dynamic behavior of structure, 
the second equation of Eqn.2.1 is overwritten as the following form, considering figure 2(b),  
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Make substitution [7,8] 
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3. SOLUTION AND ANALYZE ON DYNAMIC EQUATION OF SUSPENDED SUBSTRUCTURE 

3.1. Main Harmonic Response 

Assume external excitation tpx Ω=− cos1 ε&& , and tΩ=τ , then Eqn.2.3 can be given as the following form 

τεεω cos3
22
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2 pkxxx =++′′Ω                                                       （3.1） 

Where 2x ′′ is the second derivative ofτ . 

Assume the solution of Eqn.3.1as 
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Substitute Eqn.3.2 and Eqn.3.3 into Eqn.3.1, and make Taylor series expansion with respect toε for 3
2kxε . 

In the case of sum of coefficient, the same power ofε , equal to zero 
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The solution form of Eqn.3.4 

)cos(20 θτ += ax                                 （3.6） 

Submitting Eqn.3.6 into Eqn.3.5 
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To eliminate secular term assuming that 

0sin =θp                                    （3.8） 
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Eliminate unknown qualityθ  according to Eqn.3.8 and Eqn.3.9 
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Eqn.3.10 is called as frequency-amplitude response equation. Response curve of frequency-amplitude can be 
derived with varied length of suspender and amplitude of exciting, depicted in Figure 3 and Figure 4. 
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             Figure 3 Frequency-amplitude curves                Figure 4 Frequency-amplitude curves 

3.2. Ultra Harmonics Response  

For the convenience of solution, make substitute Fp =ε into Eqn.3.1 
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Assume that 
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Submitting Eqn.3.2 and Eqn.3.12 into Eqn.3.11 
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The solution form of Eqn.3.13 is 
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Submitting Eqn.3.15 into Eqn.3.14 
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Eliminate secular term and equation of frequency-amplitude can derived  
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According to Eqn.3.17, response curve of frequency-amplitude can be derived with varied length of suspender 
and amplitude of exciting, depicted in Figure 7 and Figure 8. 
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Figure 5 Frequency-amplitude curves    Figure 6 Frequency-amplitude curves   Figure 7 Sketch of frequency-amplitude 

 3.3. Analysis on Solution 

(1) Distortion of resonance region: According to Figure 3-Figure 6, under the exciting of main harmonics and 
ultra harmonics, the exciting frequency with the maximum value of amplitude of substructure response is not 
close to natural vibration frequency of substructure, and it fall in a certain frequency rang more than natural 
vibration frequency. The shorter length of suspender, the farther distance between natural vibration frequency of 
substructure and maximum value point is. Compared with the solution of linear system, resonance region is 
distorted. 
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(2) Catastrophe of response amplitude: According to Figure 7, in the case of amplitude of exciting p is constant 
and 21ω is increasing continuously, response amplitude a varies from point 5 to 6 via 4 along the curve, and it 
suddenly drops down from point 6 to 2 and decreases with increasing 21ω . Inversely, when 21ω decreases from 
a higher frequency, response amplitude a varies from point 1 to 3 via 2. If 21ω decreases continuously then 
response amplitude a suddenly jump up from point 3 to 4 and going to decrease. As has been analyzed, response 
amplitude has catastrophic behavior. 

(3) Pseudo-linear resonance: if the length of suspender is longer than a certain value, there is no catastrophe in 
response amplitude and the extreme point of it very close natural vibration frequency. In this case, the behavior 
of frequency-amplitude is similarly linear, so call it as pseudo-linear resonance. 

(4) “Path” and lag effect: As the frequency of exciting vary from a lower to a higher or invert, catastrophic 
behavior would occur on response amplitude. But the frequency points of jumping or dropping are not identical, 
ωa and ωb., nor the values of catastrophe. That is to say there is “path” effect on the direction of frequency 
variation influencing response amplitude. On the other hand, the catastrophe of response amplitude as exciting 
frequency returns always falls behind the forwards, so there is a lag effect. 

(5) Response amplitude’s sensitivity to parameters: according to Figure 3-Figure 6, the little difference in taking 
parameters (such as 0.2) can lead to significant changes in response amplitude. It shows that response amplitude 
is very sensitive to the little changes of parameters. 

4. ANALYSIS ON DYNAMIC RESPONSE OF SUSPENDED STRUCTURE SYSTEM 

To analyze the impact of substructure’s catastrophic behavior on mega structure, numerical calculation on the 
structure system presented in Figure 1 is carried out. Parameter values: l=1, F=1, frequency from 0.1 to 5.0 and 
invert. Loads are sine-conversion acceleration loaded on foundation of the structure system. The different 
directions of frequency variation are used to derive “path” and lag effect of response amplitude. The increment 
of exciting frequency is 0.1, and one period in every level of frequency. Exciting frequency-time history is plot 
in Figure 8. The solutions of different loads are recorded in Figure 9 and Figure 10.  
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 Figure 8 Frequency-time Loads  
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(a) Mega structure                               (b) Substructure 
Figure 9 Response amplitudes excited by increasing frequency 
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(a) Mega structure                               (b) Substructure 
Figure 10 Response amplitudes excited by decreasing frequency 

Base on Figure 9 and Figure 10, the response amplitude of suspended substructure and mega structure are 
steady in the frequency range from 0.1 to 0.3, and response frequency equal to exciting. As exciting frequency 
increasing to about 0.4, the response amplitude of suspended substructure surges, and a magnificent catastrophe 
occurs, as a result, the response amplitude of mega structure is catastrophic in a short time. The same goes as 
exciting frequency decreasing to about 0.4, but the frequency values are little different, it shows up “path” and 
lag effects mentioned above. 

5. CONCLUSIONS 

Due to the consideration theoretical analysis and calculation, several conclusions can be derived:  

(1) The dynamic responses of suspended structure system are very complex, and there is no opportunity to 
derive some extraordinary nonlinear behavior of dynamic responses, such as resonance region distortion, 
catastrophic amplitude, “path” and lag effect, if including linear restoring force only. The analysis on suspended 
structures above leads to more reasonable and optimal design parameters could be selected. 
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(2) The substructures can play a part in reducing the dynamic response amplitude of suspended structure system, 
but the catastrophic amplitude of substructures can lead to catastrophic amplitude of mega structures. If it is not 
controlled effectively, the dynamic responses of system will be unstable, even structural damage.  

(3) The dynamic responses of suspended structures are hypersensitive to the length of suspenders; a little 
different could result in catastrophe of the response peak and resonance region of structure system. 
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