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ABSTRACT: 

In multistory buildings, coupled shear walls are frequently used as the main lateral load resisting system, the 
seismic design of which requires some knowledge of their period of vibration. Although the vibrational 
characteristics of coupled shear walls have been extensively studied since the 1970’s, most of the studies 
were based on approximations resulting in varying degree of accuracies and complexities. Methods used in 
these studies range from the Rayleigh’s quotient to the Dunkerley’s formula, to the Galerkin’s method of 
weighted residuals, and to the solution of the Sturm-Louiville type differential equation. Motivated by 
conflicting results in the literature, particularly inaccuracies in a recent study, this paper re-examines the 
vibrational characteristics of coupled shear walls. The governing equation, established on the basis of 
replacing the coupling beams by equivalent laminae, is solved using the technique of differential 
transformation, which has been shown to provide rather accurate solution for eigenvalue problems. Solutions 
are shown to compare well with experimental results of model coupled shear walls published in the literature. 
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1. INTRODUCTION  
 
Current construction of multistory buildings often rely on strategically arranged shear walls to form the 
lateral force resisting system of the building. Architectural as well as service constraints, however, frequently 
perforate these shear walls with windows, doors or access openings for corridors and elevators. Since shear 
walls are connected structurally by slabs or beams at each floor level, the connecting elements can induce 
significant axial force in the walls, which in turn increase the lateral stiffness of the building. Consequently 
coupled shear walls are expected to respond differently from flexural walls. For design purposes, coupled 
shear walls may be classified according to the degree of coupling, depending on the size of the opening, 
depth and spacing of the connecting members etc (Chaallal et al. 1996). 
 
Requirements for symmetry and regularity of the floor plan in high-rise apartment buildings often result in 
uniform shear walls with a single vertical row of openings. Although such structural systems are readily 
amenable to finite element analysis, a commonly accepted technique assumes that the beams connecting the 
walls can be replaced by an equivalent system of independently acting laminae with properly assigned 
flexural properties. The laminae are assumed to be infinitely stiff in the axial direction so that individual 
shear walls undergo the same amount of lateral deflection upon lateral loading. The idealization of the 
coupling members by the equivalent system of laminae allows the lateral deflection of the shear wall to be 
described fully by a differential equation, similar to the idealization of flexural members by the 
Euler-Bernoulli beam (Smith and Coull 1991). 
 
The effectiveness of coupled shear walls in resisting seismic forces in multistory buildings has long been 
recognized (Paulay and Priestley 1992). As these forces tend to be period-dependent, considerable attentions 
have been paid to the determination of the natural period of these shear walls since the 1970’s (Tso and Chan 
1971; Tso and Biswas 1972; Jennings and Skattum 1973; Coull and Mukherjee 1973; Mukherjee and Coull 
1973; Rutenberg 1975; Tso and Rutenberg 1977). In nearly all of these studies, however, only approximate 
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formulations with varying degree of complexities and accuracies are available. For example, (Tso and 
Biswas 1972) used the Rayleigh’s quotient to determine the eigenvalues where the mode shapes of vibrating 
flexural cantilevers were used as the approximating eigenfunctions. In a separate study, (Rutenberg 1975) 
used the Dunkerley’s formula to approximate the natural frequencies of coupled shear walls, where the 
overall deflection of the wall is decomposed into two modes, one involving pure flexural deformation and the 
other involving flexural-shear deformation. The approximation was noted to result in fairly accurate natural 
frequencies of coupled shear walls. Other contributions on the subject include (Mukherjee and Coull 1973) 
and (Coull and Mukherjee 1973) where the Galerkin’s method of weighted residuals was used to 
approximate the natural frequencies of the coupled shear walls. Although the Galerkin’s method is 
considered numerically efficient, accuracy of results, particularly for the higher modes, was later questioned 
by (Tso and Rutenberg 1974). More recently, another attempt was made by (Wang and Wang 2005) to 
provide an approximate solution for the natural frequencies of coupled shear walls. Their approach was based 
on the assumption of a uniform distribution of lateral force, which results in a fourth-order Sturm-Louiville 
type differential equation. However, such assumption should be brought into question since the lateral force 
associated with the inertia of the building does not remain constant with height during free vibration. 
Intrigued by these conflicting results, the natural periods of coupled shear walls are re-examined in the hope 
of answering some of these questions. Solutions obtained using differential transformation, which is a 
relatively new technique capable of dealing with eigenvalue problems efficiently, are compared with 
experimental data. 
 
2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS  
 
The model considered in this paper consists of two planar shear walls, connected by coupling floors or 
beams, as shown Fig. 1(a). The shear walls are assumed to be subjected to a distributed lateral load w  per 
unit height. In modeling the lateral response, the discrete connecting floor slabs or beams are replaced by an 
equivalent medium of laminae, assumed to deform anti-symmetrically with a point of contraflexure at 
mid-span of the laminae. The coordinate system is chosen such that the vertical coordinate x  is measured 
from the base of the wall. The task at hand is to determine the in-plane lateral vibrational period of the 
coupled shear wall.  
 
Basic equations governing the vibration of coupled shear walls may be adapted from that developed under 
static condition. With time t  introduced as the second variable, the governing equation can be written in the 
form of a partial differential equation (Smith and Coull 1991): 
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where y  is the lateral deflection of the wall, which is a function of the vertical coordinate and time, E  is 
the elastic modulus of the wall, assumed to be the same for both walls, coupling beams or slabs, and oM  is 
the overturning moment due to the lateral load, as depicted in Fig. 1(b), and is given by:  
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The term )(w τ  in Eqn. 2.2 corresponds to the lateral load, with τ  being a dummy variable, and H  is 
the total height of the shear wall. The two parameters, p  and r , in Eqn. 2.1 are defined as:  
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(a) Dimensions and coordinate system (b) Overturning moment due to lateral load 

Fig. 1 – Coupled shear wall subjected to lateral load 
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where 1A  and 2A  are the cross-sectional areas, and 1I  and 2I  are the moments of inertia, of walls 1 and 
2, respectively. The term oA  represents the sum of the wall areas i.e. 21o AAA += , whereas the term oI  
represents the sum of the moments of inertia i.e. 21o III += . The term L  is the distance between the 
centriods of the two walls, b  is the length of the coupling beam, and h  is the story height, which is 
assumed to be constant over the height of the building. The term beI  in Eqn. 2.4 represents the effective 
moment of inertia of the coupling beam, including shear effects, and is given by:  
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where the parameter α  characterizes the reduction in stiffness of the coupling beam as a result of shear 
deformation, and is given by:  
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where bI  is the moment of inertia of the coupling beam, G  is the shear modulus, and bA  is the 
cross-sectional area of the coupling beam, and f  is the form factor, which may be taken as 1.2 for 
rectangular sections. 

For free vibration analysis of coupled shear walls addressed in this paper, the inertial effects are considered 
assuming a constant distributed mass, denoted by ρ , along the height of the building. By virtue of the 
D’Alembert’s principle, the lateral load associated with the distributed mass may be written as:  
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Thus the overturning moment oM  acting on the wall during free vibration can be written in integral form
from Eqn. 2.2, as:  
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By substituting the overturning moment into Eqn. 2.1 and taking twice the partial derivative with respect to 
x , we have:  
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Using the method of separation of variables, lateral deflection )t,x(y  of the wall may be expressed as the 
product of a position function )x(φ  and a time function )t(η  i.e.  

 ( ) ( ) ( )y x t x tφ η, =  (2.10) 

By defining the following dimensionless quantities:  
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where ω  is the circular frequency of the coupled shear wall, and using a spectral representation (Doyle 
1989), Eqn. 2.9 can be written as:  
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The above equation describes the free vibration of fixed-base coupled shear walls in non-dimensional form 
and can be solved in conjunction with six appropriate boundary conditions. Three of the boundary conditions 
may be prescribed at the base of the wall while the remaining three may be prescribed at the top of the wall. 
More specifically, the following conditions are available at the base of the wall:  
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Similarly, at the top of the wall, the following conditions are available:  
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For a given geometry of the coupled shear wall and material properties, Eqn. 2.12 may be solved together 
with Eqns. 2.13-2.18 as an eigenvalue problem. The resulting solution for the parameter λ  is related to the 
circular frequency ω  or period T  of the coupled shear wall by:  
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3. DIFFERENTIAL TRANSFORMATION AND SOLUTION PROCEDURE  
 
A convenient closed form solution for Eqn. 2.12 is generally difficult except for the simple case of coupled 
shear walls with equal properties. The homogeneous equation, however, can be solved numerically using the 
method of differential transformation, which can provide rather accurate solution for the eigenvalue problem. 
As basic concepts in differential transformation are readily available in the literature (e.g. Abdel-Halim 
Hassan 2002; Chen and Ho 1996), only salient features are highlighted here for the application to free 
vibration of coupled shear walls. By definition, the differential transformation of a function )x(φ  can be 
written as: 
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where )k(Φ  is sometimes referred to as the T-function at ax = . In many applications (e.g. Chen and Ho 
1996; Bert Zeng 2004; Abdel-Halim Hassan 2002; Chai and Wang 2006; Chen and Ho 1999; Jang et al. 
2003; Ho and Chen1998), the thk  derivative is evaluated at the origin by setting 0a = . The evaluation of 
derivatives at 0a = , however, is not a necessary condition but rather a convenient choice for 
implementation. Although not explicitly shown here, the value of a  influences the convergence of the 
solution.  
 
In the application of differential transformation to free vibration of coupled shear walls, the function )x(φ  
may be regarded as the mode shape of the shear wall. The original function )x(φ  can then be recovered by 
a differential inverse transformation, which is given by: 
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The combination of Eqns. 3.1 and 3.2 gives the Taylor series expansion of the function )x(φ  about ax =  
i.e. 
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Thus, the differential transformation technique essentially converts a differential equation into an algebraic 
equation, which can be solved together with the boundary conditions of the problem. 
 
By applying the differential transformation to the governing equation Eqn. 2.12, one obtains the following 
recursive equation: 
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For the six boundary conditions associated with the problem, the inverse transformation of Eqn. 3.2 shall be 
applied. At the bottom of the wall, we have: 
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At the top of the wall, we have: 
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and 
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The set of summation equations from Eqns. 3.5-3.10, together with the recursive equation of Eq. 3.4, 
completely describe the free vibration of the coupled shear wall. Although the representation of the wall 
deflected shape by T-functions requires a summation of an infinite number of terms, only a finite 
number of terms can be realized in actual applications. The solutions process may be facilitated by 
defining oc)0( =Φ , 1c)1( =Φ , 2c)2( =Φ , 3c)3( =Φ ,  4c)4( =Φ , and 5c)5( =Φ , and by using 
the recursive relation in Eqn. 3.4 to generate up to any n number of terms. The substitution of these 
terms into the boundary conditions, namely Eqns. 3.5 to 3.10, gives six simultaneous equations, which 
can be arranged into a matrix equation of the form: 

 [ ] { } { }6 1 6 16 6
0A C

× ××
=   (20) 

where { } T
54321o c,c,c,c,c,cC = . For non-trivial solutions, the determinant of the matrix [ ]A  must be 

equal to zero, which furnishes a polynomial of nth order for the eigenvalue λ . The resulting characteristic 
polynomial can be solved numerically to give the natural period of the coupled shear wall. 
 
4. EXAMPLE – COMPARISON WITH MODEL COUPLED SHEAR WALLS 
 
Two model coupled shear walls constructed of Plexiglas sheets were tested by Tso and Chan (1971), 
primarily to investigate the influence of coupling beams on the vibrational characteristic of coupled shear 
walls. One model corresponds to a twenty-story coupled shear wall with equal piers (denoted as model 1), 
while the second model corresponds to a fifteen-story coupled shear wall with unequal piers (denoted as 
model 2). Properties of the model coupled shear walls are listed in Table 4.1. The coupled shear walls were 
instrumented with strain gages at the base and were subjected to sinusoidal base excitation on a shaking 
table. Reported fundamental periods for each model are compared with the periods predicted by the 
differential transformation method.  
 
Fig. 2(a) and (b) shows the fundamental period of the coupled shear wall as a function of the depth of 
connecting beam for models 1 and 2 respectively. The circle symbol represents the measured fundamental 
period while the solid line represents the period predicted by the differential transformation method using the 
equations developed in this paper. It can be seen from the figures that the fundamental period of the coupled 
shear wall decreases with increased depth of the coupling beam as expected. Although the predicted period is 
smaller than that measured, the predicted period is nonetheless accurate enough for design purposes as the 
error in prediction is generally less than 5%. The prediction is equally good for coupled shear walls of equal 
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and unequal pier width. Although not explicitly shown, mode shapes as well as periods for higher modes of 
vibration can be determined using the equations and technique proposed in this paper. 

 
Table 4.1 - Properties of model coupled shear walls 

Parameter Model 1 Model 2 
Number of stories 20 15 

Length of coupling beam (mm) 25.4 35.56 
Width of right pier (mm) 76.2 35.56 
Width of left pier (mm) 76.2 106.68 

Story height (mm) 45.72 60.96 
Young’s modulus (MPa) 4.17e3 4.17e3 

Shear modulus (MPa) 1.4e3 1.4e3 
Mass density (kg/m3) 1.2e3 1.2e3 
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Fig. 2 - Fundamental periods of model coupled shear walls - data from Chan and Tso (1971) 
 

 
4. CONCLUSIONS 
 
Coupled shear walls have long been recognized as being highly effective in resisting lateral loads in 
multistory buildings. Since seismic forces adopted for design are typically period-dependent, an accurate 
characterization of the dynamic properties of coupled shear walls is important, and as such, considerable 
attentions have been paid in the past to determine the natural period of coupled shear walls. Motivated by 
conflicting results in the literature, particularly inaccuracies in a recent study, this paper re-examines the 
dynamic characteristics of coupled shear walls and proposes a solution strategy for determining their periods 
of vibration. The governing equation, established on the basis of replacing the coupling beams by an 
equivalent medium of laminae, is derived together with the necessary boundary conditions. It is shown that 
the governing equation for free vibration of coupled shear walls is a sixth-order homogeneous differential 
equation, which can be solved as an eigenvalue problem using the technique of differential transformation. 
 
The accuracy of the approach proposed in this paper is demonstrated using reported data of two model 
coupled shear walls with equal and unequal pier widths. The predicted period agrees well with the measured 
period of the model coupled shear walls for a wide range of coupling beam depth. The largest error in the 
prediction is about 5%, indicating that the methodology is sufficiently accuracy for practical design of 
coupled shear walls. The proposed method also permits the mode shapes and periods of higher modes to be 
determined.  
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