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ABSTRACT: 

The first part of the paper introduces an orthogonal expansion method for earthquake ground motion. In the 
method, seismic acceleration process is represented as a linear combination of deterministic functions
modulated by 10 uncorrelated random variables. In the second part of the paper, the recently developed 
probability density evolution method (PDEM) is employed to study nonlinear random response of structures 
which are subjected to the external excitations. In the PDEM, a completely uncoupled one-dimensional 
governing partial differential equation, the generalized density evolution equation, is derived first with regard to 
evolutionary probability density function of the stochastic response for nonlinear structures. The solution of this 
equation can put out the instantaneous probability density function. So it is natural to combine the PDEM and 
the orthogonal expansion of seismic ground motion to study the nonlinear random earthquake response. 
Furthermore, the aseismatic reliability of structures is assessed using the idea of equivalent extreme-value, 
which can be used accurately to evaluate structural systems under compound failure criterion. Finally, an 
example, which deals with a nonlinear frame structure subjected to ground motions, is illustrated to validate the
proposed method. 
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1. INTRODUCTION 
 
In the past decades, the dynamic response analysis methods of engineering structures and the random vibration
theory, including dynamic reliability assessment approach, have been extensively developed. As far as the 
second-order statistics of the responses are concerned, the statistical approaches, e.g. the Monte Carlo
simulation method (MCM), and the non-statistical approaches, such as the random perturbation method and the 
orthogonal polynomials expansion method, etc., have been extensively studied (Kleiber and Hien, 1992; 
Ghanem and Spanos, 1991; Li, 1996). However, the structures in service usually exhibit nonlinear, say, in
strong earthquakes. Notwithstanding the paramount importance of analysis of nonlinear stochastic structures, 
quite insufficient studies, where the MCM, the equivalent linearization method and the random perturbation 
method have been investigated, were carried out. As a result, only preliminary results have been gained so far. 

In recent years, a family of probability density evolution method (PDEM), which is capable of capturing the
instantaneous probability density evolution (PDF) and its evolution of the response of structures involving
random parameters, has been developed and used successfully in linear and nonlinear dynamical systems (Li 
and Chen, 2004; Chen and Li, 2005; Li and Chen, 2006). In the present paper, the PDEM is employed as a 
basis. Using the approach for evaluation of the extreme-value distribution of a set of random variables and /or a 
stochastic process and the idea of equivalent extreme-value event (Li et al, 2007), the structural system 
reliability could be evaluated requiring neither the joint PDF of the response and its velocity, nor the
assumptions on properties of the level-crossing events. An example which nonlinear structures subjected to 
earthquake excitations is studied to exemplify and validate the proposed approach. 
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2. ORTHOGONAL EXPANSION MODEL OF EARTHQUAKE GROUND MOTION 

 
A proper definition of the design ground motion time history is a very important concern in structural
earthquake engineering. In order to account for local site properties and a dominant frequency in the ground
motion, stationary nonwhite process models were suggested by Kanai (1957) and Tajimi (1960), namely, the 
well-known Kanai-Tajimi (K-T) acceleration power spectrum. At the same time, it is noted that the K-T 
acceleration power spectrum has a finite amplitude at the zero frequency. Thus, strong singularities are present 
at the zero frequency. For the power spectral density (PSD) function of the ground acceleration process, we
consider a modified version of the K-T acceleration power spectrum model suggested by Clough and Penzien 
(1975), the Clough-Penzien (C-P) acceleration power spectrum is expressed as 
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where ( )
gxS ω��  is a single-side power spectral density function of earthquake acceleration; 0S  is the spectral

intensity factor; gω  and gζ  are the filter parameters of the well-known K-T power spectrum model 
representing, respectively, the dominant frequency and critical damping of the soil layer; fω  and fζ are 
parameters of a second filter which is introduced to assure a finite power for the ground displacement. For 

f gω ω� , the second filter influences only the region of very low frequencies. The filter parameter values 
suggested by Deodatis (1996) for medium soil condition will be used in this study for demonstration purposes 

5gω π= rad / s ,  0.60gζ = ,  0.5fω π= rad / s ,  0.60fζ =                (2.2)

According to random vibration theory, the spectral intensity factor 0S may be expressed as 
2
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where maxa  is the peak ground acceleration (PGA) value ; v is the peak factor. The value eω  is given by 
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If the PGA value is specified, then 0S  is not a random variable. Thus, we can treat the spectral intensity factor

0S  as a determinate variable. The values of maxa  and v for medium soil condition are given in this study as 

max 0.2 196a g= = 2cm / s ,   3.1v =                           (2.5)

So, the spectral intensity factor 0S may be solved from Eqns. (2.3)-(2.5), i.e. 0 81.15S = 2 3cm / s . 

Based on the C-P acceleration power spectrum, the orthogonal expansion model for earthquake ground motion 
was recently proposed as (Li and Liu, 2006; Liu and Li, 2008) 
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where r is the number of truncated terms (r = 10); N is the number of expanded terms (N =501); jλ and 

, 1j mϕ +  are the eigenvalues and the (m+1)th component of corresponding orthonormal eigenvectors jΨ  of the 

seismic displacement correlation matrix, respectively; sT is 90% energy duration or stationary duration of the 
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ground motion, the value suggested by Seya et al (1993) for medium soil condition is 20 sec; 1mη + are defined 
as harmonic modulated coefficients; random variables jΘ ( 1,2, ,j r= " ) are mutually independent standard 

Gaussian variables; ( )m tφ is the Hartley orthogonal series, i.e. 
ss

1 2( ) cas( )m
mtt

TT
πφ = , m = 0, 1,…, (N-1). 

 
3. PDEM-BASED SEISMIC RESPONSE ANALYSIS OF NONLINEAR STRUCTURES 

 
Without loss of generality, the governing equation of a nonlinear MDOF structural system under earthquake
excitations is 

( ) ( , )gx t+ + = −MX CX F X MI Θ�� � ��                             (3.1)

with the deterministic initial condition 

 0 0( ) tt = =X x ,  0 0( ) tt = =X x� �                              (3.2)

where X�� , X� , X  are the 1n×  acceleration, velocity and displacement vector with the over dot denoting the
derivation with regard to time; M , C  are n n×  mass and damping matrix, respectively; F  is the restoring 
force vector; I  is the 1n×  unit column vector; gx��  is the stochastic ground acceleration excitation, i.e. Eqns.
(2.6) and (2.7); Θ  is the 1r ×  random vector with known probability density function (PDF) ( )pΘ θ where 

1 2( , , , )r= Θ Θ ΘΘ " . 

Eqns. (3.1) and (3.2) can be rewritten as a stochastic state equation, i.e. 

( , , )t=Y A Y Θ�                                   (3.3)
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For a well-posed dynamics problem, the solution to the system (3.3) exists, is unique and must be a function of
Θ . It is convenient to assume the solution takes the form 

( , )t=Y H Θ                                    (3.6)

Likewise, the velocity of Y also exists and is a function of Θ , and could be assumed to take the form 

( , )t=Y h Θ�                                    (3.7)

Obviously, according to Eqns. (3.6) and (3.7), it follows that ( , ) ( , ) /t t t= ∂ ∂h Θ H Θ . 

The components of Eqns. (3.6), (3.7) read 

( , )l lY H t= Θ                                  (3.8)

( , )l lY h t= Θ�                                   (3.9)

where Yl, Hl, hl (l=1,2, …,2n) are the lth component of Y, H and h, respectively. For simplicity of writing, the
subscript l will be omitted hereafter without inducing confusions. 

According to the derivation (Li and Chen, 2004; Chen and Li, 2005; Li and Chen, 2006), the joint PDF of the 
augmented state vector ( , )Y Θ  satisfies the governing partial differential equation 
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with the initial condition 

0 0( , , ) ( ) ( )Y tp y t y y pδ= = −Θ Θθ θ                         (3.11)

where 0y  is the component of 0y  as a deterministic value. 

The PDF of ( )Y t  will then be given by 

( , ) ( , , )dY Yp y t p y t
Ω

= ∫
Θ

Θ θ θ                           (3.12)

where ΩΘ  is the distribution domain of Θ . 
 
 
4. EVALUATION OF THE STRUCTURAL SYSTEM RELIABILITY 
 

If the reliability of a structure is defined as the probability of a compound random event as combination of more
than one random event, evaluation of the so-called system reliability is encountered. Using the idea of
equivalent extreme-value event (Li et al, 2007), the system reliability could be evaluated through computing the
probability of an equivalent extreme-value event, leading to one-dimensional integration of the PDF of the 
equivalent extreme-value random variable. 

For the first-passage problem, the dynamic reliability against the response index Y(t) reads 

sPr{ ( , ) , [0, ]}R Y t t T= ∈Ω ∈Θ                            (4.1)

where sΩ  is the safe domain. In general cases, it is easy to rewrite Eqn. (4.1) into 

Pr{ ( , ) 0, [0, ]}R G t t T= > ∈Θ                             (4.2)

Here G(·) is a time dependent limit state function. For instance, if Eqn. (4.1) takes the form (as a double 
boundary condition): 

bPr{ ( , ) < , [0, ]}R Y t y t T= ∈Θ                            (4.3)

where yb is the boundary, then one can get 

b( , ) ( , )G t y Y t= −Θ Θ                               (4.4)

Eqn. (4.2) could also be written equivalently in a different form as 

[0, ]
Pr{ ( ( , ) 0)}

t T
R G t

∈
= >Θ∩                             (4.5)

According to the idea of equivalent extreme-value event (Li et al, 2007), if one defines an extreme value as  

                                       min [0, ]
min ( ( , ))
t T

W G t
∈

= Θ                               (4.6)

where PDF can be captured through the PDEM, then the reliability in Eqn. (4.5) equals 

min0minPr{ 0} ( )dW W WR W p
+∞

= > = ∫                         (4.7)

It is worth pointing out that if one wants to evaluate the reliability in Eqn. (4.5) directly with the probability 
integration, the infinite-dimensional joint PDF of the stochastic process ( , )G tΘ  is needed, i.e., the correlation 
information among any different time instants is required. However, using the equivalent extreme-value event, 
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total information of the correlation is inherent and exact solution can be derived easily. 

Likewise, if there is more than one limit state function combined together in the dynamic reliability evaluation, 
say, 

1
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where jT  is the time duration corresponding to ( , )jG tΘ . According to the idea of equivalent extreme-value 
event (Li et al, 2007), one can define the equivalent extreme value as 
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So, the reliability in Eqn. (4.8) can be computed directly by 

extPr{ 0}R W= >                               (4.10)
 
 
5. NUMERICAL IMPLEMENTATION 
 
As discussed above, the random response and reliability evaluation of nonlinear structures could be easily
implemented through the numerical solution. The steps include: 

(i) Select representative point set in the domain ΩΘ  and denote it as ,1 ,2 ,( , , , )q q q q sθ θ θ=θ " (q = 1,2, … , Nsec), 
where Nsec is the cardinal number of the point set. Simultaneously, determine the corresponding assigned 
probability Pq. 
(ii) Let q=Θ θ  and carry out dynamic response analysis on Eqn. (3.1) (or Eqn. (3.3)) to obtain the time-variant 
velocity ( , )qh tθ  and the value of the equivalent extreme value min ( , )qW Tθ (see Eqn. (4.6)) or ext ( , )qW Tθ
(see Eqn. (4.9)). 
(iii) Introduce ( , )qh tθ  into Eqn. (3.10) and solve it under the initial condition (3.11). 
(iv) Iterate Steps (ii) and (iii) running over all q’s and obtain the PDF of Y(t) by  

sel

1
( , ) ( , , )

N

Y Y q
q

p y t p y t
=

=∑ Θ θ                             (5.1)

(v) Using PDEM to get the extreme-value distribution and compute the reliability with the one-dimensional 
numerical integration (see Eqn. (4.7) or (4.10)).  

In step (i), the strategy of selecting representative points in ΩΘ needs special techniques, the 
Number-Theoretical-Method-based algorithm has been developed by Li and Chen (2007). In step (iii), the TVD 
schemes are appropriate in dynamic response analysis while the one-sided difference scheme is preferred in 
evaluation of the extreme value distribution and the reliability. 
 
 
6. NUMERICAL EXAMPLE 
 
In order to verify and validate the proposed approach, an 8-storey frame structure shown in Figure 1 is 
investigated. The masses of each story, m1- m8, are, respectively, 0.6, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2 (× 105 kg). 
The heights h1=4.0m, h=3.0m, section size of columns 500× 500 mm2, the beams are assumed to be completely 
rigid. Rayleigh’s damping, C = aM + bKt, where a = 0.01, b=0.005, Kt is the tangent stiffness matrix, is 
employed. The Young’s modulus E of the column is 3.0× 1010 Pa. The restoring force relationship is the bilinear 
hysteretic force model shown in Figure 2 with xΔ denoting the initial yielding displacement ( xΔ = 6mm), 
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and 1 0/ 0.1K Kα = = . 
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Figure 1 Structural model     Figure 2 The bilinear hysteretic restoring force model 

In employing the PDEM, one will first select representative points in the random space and then use the
orthogonal expansion model to generate the representative acceleration time history of ground motion. In the 
paper, 305 representative acceleration time history of ground motion from medium soil are picked. The
probabilistic information, including the typical PDFs at certain time instants, the PDF evolution surface and the
contour of the PDF surface, of the 4th inter-story drift of the structure is depicted in Figure 3. 

 

 

(a) (b) 
 

(c) (d) 

Figure 3 The probabilistic information of the response for the story drift of 4th floor: (a) the mean and the standard 
deviation, (b) typical instantaneous PDFs at certain instants of time, (c) evolution of PDF against time: the PDF surface
and (d) the contour to the PDF surface. 
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The steps elaborated in the above section could be implemented to carry out the dynamic reliability evaluation.
The probabilities of failure and reliability of the structure over time interval [0, 20] sec against inter-story drift 
are listed in Table 1. Pictured in figure 4 are the PDF and cumulated probability distribution function (CDF) of
the equivalent extreme values of the structure system. 

Table 1 the failure probability and reliability of the structure against inter-story drifts 

Number of story Probability of failure Reliability 
8th 0.0000 1.0000 
7th 0.0000 1.0000 
6th 0.0000 1.0000 
5th 0.0000 1.0000 
4th 0.0003 0.9997 
3rd 0.0133 0.9867 
2nd 0.0398 0.9602 
1st 0.0556 0.9444 

The structure system 0.0796 0.9204 

(note: the threshold of dimensionless inter-story drift is 1/100) 

 
                       (a)                                              (b) 

Figure 4 the equivalent extreme value of the dimensionless inter-story drift for the structure system:  
(a) the PDF and (b) the CDF. 

 
 
7. CONCLUSIONS 
 
In the present paper, the probability density evolution method and the idea of equivalent extreme-value event 
are applied to study dynamic response and reliability evaluation of nonlinear structures. This makes it possible 
to transform computation of the probability of the compound random event, usually leading to
multi-dimensional integration of the joint PDF, to a one-dimensional integration of the PDF of the equivalent 
extreme value. The approach avoids the complicated computations in traditional structural system reliability
assessment, and more importantly, avoids the difficulty in dealing with the correlation among the component
random events. An example, where nonlinear 8-story frame structure under earthquake excitations, is studied to
exemplify and validate the proposed approach. 
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