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ABSTRACT : 

Understanding the behavior of structural elements under in-plane horizontal loading is essential for any 
performance based design procedure. That applies especially to columns and walls as main lateral load resisting
elements. There are many parameters that influence the prediction of the elements behavior, especially at the
ultimate stage. The outlined problem presents an ideal example where neural networks (artificial intelligence)
can be used. 
 
An extensive library of tested columns and walls has been collected. Work on that database considers devising a
protocol of presenting the research data in the performance form. The relationship between qualitative
performance description and engineering parameters that can be considered in design has been established. The
use of neural networks, taught on the collected data base, enables development of improved procedures for 
assessment of strength and deformation capacities of the columns and walls at all performance levels. It enables
prognostic behavior of the lateral load resisting elements under horizontal in-plane loading. The element 
geometry and material data are used for input and performance behavior of the elements is obtained as the
output of such an expert system that can be used as problem solver. 
 
The work on the collected data base increases the understanding of element behavior, their performance at 
various demand levels and eliminates complicated detailing that were encouraged by lack of knowledge. That is
in direct support of development a multi level performance design methodology for structural systems. 
 

KEYWORDS: Neural networks, Performance based design procedure, Seismic capacity, Reinforced 
concrete columns and walls, Experimental database; 

 
 
1. INTRODUCTION  
 
Civil and structural engineers, in their attempt to improve the analysis, design and control of the behavior of both 
built and natural systems have shown much interest in the modeling of the behavior of physical processes. Since 
the behavior of reinforced concrete columns and walls with nonhomogeneous, nonisotropic and nonlinear 
material under a multiaxial state of stress may be difficult to establish theoretically, test data are often used to
develop empirical and semi empirical approaches. The quantitative determination of strength and performance
capability of structural elements is of vital importance for the vulnerability assessment of existing buildings as 
well as for effective performance based design of earthquake resistant new buildings.  
 
The work was motivated due to a great deal of uncertainty in the estimation of the seismic capacity of wall and
frame structures. In spite of extensive experimental studies there is still a lack of understanding about the
dependence of observed behavior on variables such as cross-sectional shape, amount of vertical and horizontal 
reinforcement, axial compression, loading histories, etc. Evaluation of performance capability of walls and
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columns based on the stress-strain properties of material does not easily represent true behavior due to many
unknown parameters (bond-slip of reinforcement, crushing and spalling of concrete, etc.). Empirical approach 
seems to be more appropriate, as many unpredictable parameters are included in the closed form empirical
expressions. However, a comparative study of various models will often show that the models are effective only
to interpret their own experimental results or data used.  
 
Non-linear response of reinforced concrete (RC) is caused by cracking, plastic deformations in compression
and crushing of the concrete and plastic deformations of the reinforcement. Other, usually less important, 
time-independent non-linearity arises from bond slip between steel and concrete, aggregate interlock of cracked
concrete and dowel action. Many mathematical models for non-linear finite element (FE) analysis of reinforced 
concrete structures were proposed. A number of computer programs are also available for non-linear analysis of 
reinforced concrete. The constitutive models and plasticity models used in these programs, however, are
different, and it is generally not straightforward to apply these models. Some of the input parameters are fictive 
and need an adjustment.  
 
On the other hand, inherent in the concept of Performance Levels and Ranges is the assumption that
performance can be measured using analytical results such as story drift ratios or strength and ductility demands 
on individual components or elements. To enable structural verification at the selected Performance Level,
stiffness, strength, and ductility characteristics of many common elements and components have to be derived, 
from laboratory tests and analytical studies, and put in a standard format. 
 
Because of that, the intended aim of this study is to explore the feasibility of using neural network in predicting
the performance capability of specific vertical structural elements, which have a very favorable lateral load 
resistance. Over 100 experimental test results were collected from the literature of rectangular and spiral 
reinforced concrete columns as well as of nearly 300 reinforced concrete walls, all tested under concentric
horizontal loading. A multilayer functional link neural network was used for training and testing the
experimental data. It was found that the neural network model could reasonably capture the underlying
behavior of confined reinforced concrete columns and walls, because it provided instantaneous result once it is 
properly trained and tested. 
 
 
2. NEURAL NETWORKS  
 
Neural networks, as part of the field of artificial intelligence, have nowadays quite extensive usage in scientific
research as well as in a broad range of practical applications, including classification, pattern recognition,
function approximation, optimization, prediction, evaluation of state and automatic control. An artificial neural 
network consists of a number of processing elements, logically arranged into two or more layers and interacts
with each other via weighted connections to constitute a network. The remarkable computational characteristics
of neural networks are their ability to learn functional relationships from training examples and to discover 
patterns and regularities in data through self-organization. Applied software package was “NeuroShell2” Ward
System Co [1]. Using NeuroShell2 software program, we created operable problem solving application called
neural network (NN) without programming in order to predict the behavior of reinforced concrete structural
columns and walls subjected to horizontal loading. The neural network has been trained through learning on the
example patterns.  
 
 
2.1. Neural Network Architecture  
 
Experimental database used in the study was compiled from the available literature and includes data from laboratory
tests carried out on reinforced concrete walls and columns. Work on that database considers devising a protocol of
presenting the research data in the performance form. Relationship between qualitative performance description and
engineering parameters considered in design is established. The inputs of the created neural networks are geometrical
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and material properties, reinforcement ratios and loading. Output variables are those, which have an important role in
performance evaluation, like drift (δ), displacements (d), shear strength (V) and mode of failure. A set of neural
networks were devised and tested until the output results satisfied the set up quality criteria, and the one that gave 
best overall results was used later on. 

The learning process primarily involves the determination of connection weight matrices and the pattern of the
connections, and application of the learning rule that the neural network obtains the desired relationship 
embedded in the training data. Analyzing the various training patterns, we have selected the type and neural
network architecture that gave the best estimation results. We also analyzed the influence of database 
arrangement on the estimation of results. Finally, back propagation network architecture with multiple hidden
slabs and different activation functions was chosen (Figure 2.1).  
 

SLAB 1 SLAB 5SLAB 4

SLAB 2

SLAB 3

INPUT OUTPUTHIDDEN SLABS  
Figure 2.1  Neural network architecture scheme  

 
 
3. APPLICATION OF NEURAL NETWORK TO RC COLUMNS  
 
3.1. The experimental database 
 
The database used in this study includes data from the PEER Structural Performance Database. This database 
builds on previous work at the National Institute of Standards and Technology. The original NIST database 
described 107 tests of rectangular reinforced columns and 92 tests of spiral-reinforced concrete columns; for 
this research, we have used 91 rectangular columns and 30 spiral-reinforced [6]. 
 
3.1.1. Input variables 
 
Based on theoretical background and available database, the following variables were chosen as input variables
influencing structural columns behavior subjected to in plane horizontal loading: 
fc - characteristic compressive strength of concrete (MPa), P - axial load (kN), B - column width (mm), H -
column depth (mm), L - length of equivalent cantilever (mm), φL- diameter of longitudinal reinforcement bars 
(mm), nL- number of longitudinal reinforcement bars, a - clear cover (mm), ρl - longitudinal reinforcement
ratio, fyl - yield stress of longitudinal reinforcement(MPa), φT - bar diameter of transverse reinforcement (mm), 
ρt - transverse reinforcement ratio, fyt - yield stress of transverse reinforcement (MPa). 
 
3.1.2. Output variables  
 
The following variables were chosen as output variables describing structural columns behavior subjected to in 
plane horizontal loading: 
Fy - yield shear force, dy - yield displacement, Fu - ultimate shear force, du - ultimate displacement, Failure type 
(F - flexure 1; S - shear 2; flexure - shear 3). 
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3.2. Neural networks training models 
 
We used a regular three-layer back propagation network with two slabs in the hidden layer. Input variables are in
slab 1 with 13 neurons. Hidden slabs 2, 3 and 4, had 5 neurons each. Output variables are in element 5. For every
output variable, we created one neural network. The network learning rate (the amount of weight modification) 
was set to 0,1, momentum factor (the proportion of the last weight change that is added into the new weight
change) was set to 0,1, while the initial weights (describing connection strengths between the neurons) were set to 
0,3. The network randomly chooses the training patterns. Missing data values were replaced using average of the
minimum and maximum values. We used a 20% production set to test the network’s results with data the network
has never “seen” before. The remainder of the pattern file (80%) formed a training set. 
 

Table 3.1  Neural network training models overview   
Neural 
network 

Number of 
examples 

Column 
type 

Complete input 
variables 

Number of 
inputs Outputs 

NN-01-C 121 R, S complete 13 Fy 
NN-02-C 121 R,S complete 13 dy 
NN-03-C 121 R,S complete 13 Fu 
NN-04-C 121 R,S complete 13 du 
NN-05-C 121 R,S complete 13 Failure type 

 
 
3.3. Test examples 
 
The selected test columns geometrical and material properties are shown in Table 3.2 and on Figure 3.1. 
 

Table 3.2 Test columns geometrical and material properties (input variables) 
Test Columns  1 (RO) 2 (RI) 3 (R) 4 (RI) 5 (R) 6 (RI) 
Specimen name 10 20 40 60 90 4 

f’c (MPa) 40,00 25,60 19,80 115,80 29,20 23,50 
P (kN) 1920,00 819,00 406,00 1176,00 267,00 4265,00 
B (mm) 400,00 400,00 160,00 200,00 305,00 550,00 
H (mm) 400,00 400,00 160,00 200,00 305,00 550,00 
L (mm) 1600,00 1600,00 1600,00 500,00 1676,00 1200,00 
φL (mm) 16,00 20,00 9,50 12,70 22,00 24,00 

nL 12,00 8,00 8,00 12,00 4,00 12,00 
a (mm) 13,00 40,00 12,50 9,00 32,00 38,00 
ρl 0,0151 0,0157 0,0222 0,0380 0,0163 0,0179 

fyl (MPa) 446,00 474,00 341,00 399,60 367,00 375,00 
φT (mm) 6,00 12,00 5,00 6,00 9,50 12,00 

ρt 0,0057 0,0255 0,0073 0,0161 0,0154 0,0350 
fyt (MPa) 255,00 333,00 559,00 328,40 363,00 294,00 

 
 

     Confinement Type R        Confinement Type RI         Confinement Type RO 

B

H

B

H

B

H

Direction
of Load

Direction
of Load

 
Figure 3.1 Test columns geometrical properties and confinement types  
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3.4. Test results 
 
The quality of chosen neural network is tested on the columns left out from the original database. The prediction 
and experimental data were reasonably close, as we can see at following figures. 
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Figure 3.2 Comparison of experimental results and network’s prediction for Fy and dy 
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Figure 3.3 Comparison of experimental results and network’s prediction for Fu and du 

 
The figure 3.4 shows the comparison between experimentally acquired force displacement histories for tested
columns and the force displacement primary curve obtained using neural network.    
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Figure 3.4 Comparison of networks prediction and force-displacement history of column 1 and 2  

 
 
4. APPLICATION OF NEURAL NETWORK TO RC WALLS 
 
4.1. The experimental database 
 
The database used in this study includes data from laboratory tests carried out on 285 reinforced concrete walls.
All test specimens were isolated walls fixed at the base. Test walls with rectangular (R), barbell (B) and flanged
cross-sections (F) were subjected to either monotonic or various cyclic horizontal loading regimes. The
measured response variables are maximum shear force (Vmax), drift index (ratio of maximum top displacement 
to the height of the wall) and failure type (S-shear and F-flexural failure). It should be pointed out that for a 
number of tests the available data were incomplete – so, the original database had to be reduced and rearranged 
in form suitable for the neural network. 
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4.1.1. Input variables 
 
Based on theoretical background and available database, the following variables were chosen as input variables
influencing structural wall behavior subjected to horizontal loading: 
1.) L-type of loading: A (1) - alternating, R (2) - repeated: specimen is loaded in one direction, unloaded, and
reloaded in the same direction, M (3) - monotonic: specimen is loaded in one direction to failure, C (4) - cyclic: 
alternating or repeated; 2.) S-cross section type: R(1) – rectangular, B (2) – barbell, F (3) – flanged; 3.)(ρs) -
ratio of confinement reinforcement effective volume in boundary element to the volume of the core; 4.) fys - yield 
stress of confinement reinforcement in boundary element; 5.)(ρb) – ratio of longitudinal reinforcement in 
boundary element; 6.) fybe - yield stress of longitudinal reinforcement in boundary element; 7.) rhov (ρv) - ratio 
of distributed vertical web reinforcement in wall; 8.) fyv - yield stress of distributed vertical web reinforcement; 
9.)(ρh) - ratio of distributed horizontal web reinforcement in wall; 10. fyh - yield stress of distributed horizontal 
web reinforcement; 11.) be - thickness of the wall web; 12.) bf - width of boundary element; 13.) hf - length of 
boundary element; 14.) Lw - length of the wall; 15.) fc - concrete cylinder compressive strength; 16.) I - moment 
of inertia; 17.) P/A - axial stress in the wall. 
Particular input variables having some kind of functional interdependence have been left out in order to 
increase the effectiveness of neural networks to be trained: Abe - cross-section area of boundary element, Aweb -
cross-section area of wall web, Acw - cross-section area of wall, and steel areas Asbe i Aswv , hw – wall height.  
 
4.1.2. Output variables  
 
The following variables were chosen as output variables describing structural walls behavior subjected to
horizontal loading: 
1.) Vmax (maximum shear force); 2.) u max / hw (drift index); 3.) Failure type (F – flexure 1; S - shear 2). 
 
 
4.2. Neural networks training models 
 
First, test walls with too many missing input variables were left out, reducing the database to 197 examples.
Secondly, we have reduced the number of input variables to 17 by leaving out the variables showing no 
significant influence on output results as well as variables having functional interdependence. Thus, number of
input variables was reduced to 17. Using back propagation network architecture, the results were better with only 
one output variable. So, for each output variable, we created one neural network. Overview of the created
networks regarding wall types, number of examples and data completeness is given in Table 4.1. 
 
Finally, there were 17 input variables describing particular wall geometrical and material properties while the 
output variable in neural networks NN-1 to NN-8 was maximum shear force Vmax, in NN-9 output was failure 
type and in NN-10 – drift index. 
 

Table 4.1 Neural network training models overview 
Neural 

Network 
Number of 
examples Wall type Complete input 

variables 
Number of 

inputs Outputs 

NN-01-W 197 R, B, F incomplete 17 V max 
NN-02-W 86 R, B, F complete 17 V max 
NN-03-W 27 R incomplete 17 V max 
NN-04-W 11 R complete 17 V max 
NN-05-W 135 B incomplete 17 V max 
NN-06-W 54 B complete 17 V max 
NN-07-W 35 F incomplete 17 V max 
NN-08-W 20 F complete 17 V max 
NN-09-W 178 R, B, F incomplete 17 Failure type 
NN-10-W 142 R, B, F incomplete 17 Drift 
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We used a regular three-layer back propagation network with two slabs in the hidden layer. Input variables are 
in slab 1 with 17 neurons. Hidden slabs 2, 3 and 4, had 7 neurons each.  Output variables are in element 5.
Thus, each of the 17 input variables is connected, through 21 neurons in both hidden slabs, to the output
variables. Different activation functions were applied to hidden layer slabs in order to detect different features
in a pattern processed through a network: Gaussian function on elements 2 and 4, tanh on element 3 and finally, 
on output layer it is a logistic function. All other neural network-training parameters are the same as in the 
neural network used for the structural columns database.  
 
 
4.3. Test examples 
 
Once the network is trained, it could be used for prediction of wall seismic performance. Network quality is 
checked against the independent data network has never seen before. The selected test walls geometrical and
material properties are shown on Figure 4.1 and in Table 4.2. 

1-R

2-R,Camus

3-B

4-B 5-B

6-F

7-F

 
Figure 4.1 Cross-sections of the tested structural walls 

 
Table 4.2  Test walls geometrical and material properties (input variables) 

1 (R) 2 (R) Camus 3 (B) 4 (B) 5 (B) 6 (F) 7 (F)

1 1 2 2 2 3 3
1 1 1 1 3 1 3

0,68 0,32 1,35 1,70 0,51 0,84 1,18
472997 547333 464034 570906 293727 275800 574354

2,40 2,01 1,97 3,52 4,70 0,82 1,13
476445 547333 442659 501267 293038 370951 574354

0,28 0,22 0,29 0,83 0,92 0,45 1,13

472997 563000 464034 506093 294417 276490 574354
0,42 0,32 0,63 0,83 0,92 0,45 0,57

472997 563000 464034 506093 294417 275800 537121
23305 39600 45645 34475 42563 23691 35626

233,05 1779,90 3925,32 2723,53 8,96 2129,87 2493,92
5853938 2456500 13880482 20378627 77878 40220618 2830788

Wall type

Shape
Loading

rhos (%)
fys ( kN/m2)

rhobe (%)
fybe (kN/m2)

rhov (%)

P/A (kN/m2)
I (cm4)

fyv (kN/m2)
rhoh (%)

fyh (kN/m2)
f'c (kN/m2)

 
 
 
4.4. Test results 
 
By comparing the experimental wall result with the estimations for maximum shear force Vmax given by the 
neural networks NN-01 to NN-08, the best match was achieved with the prediction of NN-01. The NN-01 is the 
network with incomplete input data for particular walls and uses all three (R, B, F) wall cross-sectional shapes. 
However, the networks NN-02 to NN-08 gave good predictions too, but only for particular wall cross-section on 
which the training was carried out. Therefore, the NN-01 neural network was used to estimate the failure type
(NN-09) and drift index (NN-10) and good results were obtained. 
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Figure 4.2 Comparison of experimental results and network’s prediction for Vmax and Failure type 

 
 
5. CONCLUSION 
 
Understanding of the true behavior of structural elements is essential for any performance based design 
procedure. This study has demonstrated the application of neural network techniques to predict the complicated 
behavior of RC columns and walls, basing its entire process on a set of examples presented to the network. The 
use of neural networks in structural elements behavior evaluation under in-plane horizontal loadings can be 
two-folded: 

1. For evaluation of the element capacity when its geometry and material data are known and performance
behavior is required; 

2. Performance ideal is set and geometry and strength of the elements is required. 
 
The advantages of neural network are in their ability to learn on the vast experimental database. Therefore, they 
constantly consider all variables influencing performance in real structures but are difficult to take numerically
into account. In addition, contribution of various variables can be analyzed and how they influence the 
respective performance criteria. The results of performance predictions achieved by the neural networks are
compared with independent experimental results. They showed good accuracy of the obtained predictions
implying a reliable applicability of neural networks. The quality of the prediction depends mainly on the quality
of the database. In principle, any number of input parameters (which are contained in the database) can be used.
By increasing the size of the databases and by introducing new input parameters, new trends may be revealed,
studied and incorporated in the mathematical models. 
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