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ABSTRACT: 
 
An analytical method for calculation of dynamic response of a cylindrical cavity in infinite cross-anisotropic 
media using complex functions theory is presented. The basis of the method is grounded on solving the wave 
equations in the complex plane and frequency domain. Solution of the partial differential equations is found in 
series of the Hankel functions with unknown coefficients. Applying appropriate boundary conditions of the 
problem, a set of algebraic equations are achieved. Solving these equations, the unknown coefficients and 
consequently all desirable parameters such as stress, strain and displacement are calculated.  
Numerical results including stress and displacement fields in vicinity of the cylinder subjected to the harmonic 
waves are presented. Also the effects of important cross-anisotropic parameters are mentioned. 
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1. INTRODUCTION 

 
The problem of wave propagation and scattering in the infinite media is described by wave equations. In the 
most previous researches, the isotropic conditions were considered for the media. In this way, the exact 
solutions are well known such as Pao and Mow [1]; Eringen and Suhubi [2]. A few studies have been performed 
for the problem of wave propagation and scattering in cross-anisotropic media. Honarvar & Sinclair [3, 4] 
solved the problem of acoustic wave scattering from transversely isotropic cylinders. Also Fan et al. [5] solved 
this problem for the case that cylinder encased in a solid elastic medium. Both of them are on the basis of 
normal mode expansion method. Ahmad & Rahman [6, 7] solved the problem of acoustic wave scattering by 
transversely isotropic cylinders with the same method but with different potential functions.  
This paper presents an analytical solution for the problem of scattering of harmonic waves in an infinite cross-
anisotropic medium on the basis of complex functions theory. The use of complex functions in elastostatic 
problems was expanded by Muskhelishvili [8]. Nowinski [9] solved the problem of static stress concentration 
around holes subjected to uniaxial tension, using complex function theory. This method was used for solving the 
problem of wave scattering by a cavity in infinite elastic media by Liu et al. [10] and Han et al. [11]. The use of 
complex functions for solving the problem of wave scattering in cross-anisotropic medium is presented for the 
first time. In this way, first a group of potential functions (Φ , Ψ , Χ ) is applied into displacement formulation 
of wave equations. Then, the governing equations are transformed into the complex plane. Solving an 
eigenvalue problem, two wave numbers (quasi-P, quasi-SV) are determined. The wave number SH is found 
directly. In the complex plane, solution of the resulting partial differential equations (calculation of potential 
functions) is found in series of the Hankel functions (complex sum of the Bessel functions) with unknown 
coefficients. These Hankel functions satisfy the radiation conditions. Applying appropriate boundary conditions 
of the problem, a set of algebraic equations are achieved. Solving these equations, the unknown coefficients and 
consequently potential functions are calculated. After evaluating the potential functions, all desirable parameters 
such as stress and displacement can be calculated in any point of the medium. Numerical results are presented 
including stress and displacement fields in the vicinity of cylinder in an infinite cross-anisotropic medium 
subjected to harmonic waves. Also the effects of important parameters such as vh E/E , vv E/G  and hhν  are 
mentioned. 
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2. GOVERNING EQUATIONS 
 
The equilibrium equation of a medium is written as: 
 

ij, j i iσ ρb ρu  + = &&                                                                             (2.1) 
 
In this statement ijσ  is the stress tensor component, ibρ  is the body force, iu  is the displacement vector 

component and ρ is the mass density of medium. The dots (.) denote the differentiation respect to the time (
t∂
∂

). 

The constitutive equations in a cross-anisotropic medium are written as below: 
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xσ , yσ , zσ  are the normal components of stress tensor and xyσ , xzσ , yzσ  are the shear components of it. Also 

xu , yu , zu  are the components of displacements in direction x, y and z receptively. The relation between 

coefficients ijC  and elastic parameters is written as following: 
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vE  and hE  and are the Young's modulus in the vertical and any horizontal direction. hhν  and vhν  is Poisson's 

ratio as the corresponding operators of lateral expansion due to horizontal direct stress in a horizontal direction 
and due to horizontal direct stress in a vertical direction, respectively. vG  is modulus of shear deformation in a 
vertical plane. The other parameters are defined as below: 
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From Eqns. 2.1 and 2.2 the equilibrium equations in the absence of body forces in term of displacement vector 
components are derived as 
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3. POTENTIAL FUNCTIONS 
 
The relation between displacements and potential functions (Φ , Ψ , Χ ) is defined as below: 
 

( ) ( )z zu e a e= ∇Φ +∇× Χ + ∇×∇× Ψ
r rr

                                                              (3.1) 
 
in which "a" is the radius of the cylindrical cavity. In the Cartesian coordinates: 
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where xu , yu , zu  are the Cartesian components of the iu . Therefore, Eqn. 2.5 is converted to the two groups 

of equations ( ziKti zee ω−φ=Φ , ziKti zee ω−ψ=Ψ , and ziKti zee ω−χ=Χ ): 
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where 2∇  is the two-dimensional Laplace operator: 
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and ω  is the frequency of the waves.  
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4. COMPLEX FUNCTIONS 
 
The complex variables are introduced: 
 

iyx +=ζ   iyx −=ζ  θ=ζ ire                                                     (4.1) 
 
Using relations below, 
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the Laplace operator in the complex plane is obtained as 
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Also, the potential functions are considered as below: 
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( )rH )1(

n l  is the Hankel function of first kind and order n: 
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where ( )rJn l  and ( )rYn l  are the Bessel functions of first and second kind respectively and of order n. This 
type of the Hankel function satisfies the radiation boundary condition (Sommerfield condition). Also na , nb  are 
the unknown coefficients. Based on Eqns. 4.4, 4.5 and relations below, 
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Eqn. 3.3 is converted to an eigenvalue problem as 
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The coefficients ija  are 
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Solving this eigenvalue problem, two values for δ  will be found. ( 1δ  for quasi-P wave (qP), 2δ  for quasi-SV 
wave (qSV)). Also from Eqn. 3.4, the wave number β  for SH wave is achieved directly as 
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Finally, the potential functions are written as below: 
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in which:  
 

1 11 12 21 22q a / a a / a= − = −    for  1δ = δ                           (4.14) 

2 12 11 22 21q a / a a / a= − = −   for  2δ = δ                           (4.15) 
 
The unknown coefficients, nX , nY  and nZ  are calculated from boundary conditions of the problem. Now, 
knowing the potential functions, displacements and stresses and can be calculated from the known potential 
functions and then the boundary value problem can be solved. 
 
 
 
5. DISPLACEMENT ANS STRESS FIELDS 
 
Using Eqn. 3.2, the displacement field is: 
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ru , θu , zu  are the radial, tangential and normal components of displacement vector respectively.  

For calculating the stresses, Eqn. 2.2 is written as below: 
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where rσ , θσ  are the radial and hoop components of stress tensor and θσr , rzσ  are the shear components of it. 
These relations in complex plane and in term of potential function are 
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(The second and third relations have been constructed from subtracting the second and third relations of Eqn. 
5.2.). Finally, Eqn. 5.3 is written in term of the Hankel functions as below: 
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6. BOUNDARY VALUE PROBLEM 

Now consider a cylindrical cavity in an infinite medium is subjected to a harmonic incident wave. The radius of 
cavity is “a” and on its surface the stress is vanished. Theses boundary conditions should be satisfied at the 
cavity surface: 
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All of the wave variables are the sum of incident and scattering components, therefore the potential functions 
are written as 
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where inφ , inψ , inχ  are the incident and scφ , scψ , scχ  are the scattered components of the potential functions. 
Therefore the boundary conditions at the cavity surface are 
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( ) ( )

in sc
r r r r

in sc
r r r r

in sc
rz rz

i i 0

i i 0

0

θ θ

θ θ

⎧ σ − σ + σ − σ =
⎪⎪ σ + σ + σ + σ =⎨
⎪σ +σ =⎪⎩

  at ar =                                                 (6.3) 

 
Incident components of the stresses are derived from incident potential functions using Eqn. 5.3. Also scattering 
component of these variables is found in Eqns. 5.4-1 to 5.4-3. In the case of dilatational incident wave (P wave), 
the incident potential function is written as 
 

ziKxiK
0

in zx eeφ=φ                            (6.4) 
                                                                                                                   

0φ  is a coefficient and 
 

γ= cosKK x     γ= sinKK z                                                                   (6.5) 
 
K  is the wave number and is related to the wave frequency as following: 
 

1/ 2
11CK ⎛ ⎞

ω = ⎜ ⎟ρ⎝ ⎠
                                                                         (6.6) 
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Also γ  is the angle of incident wave with axis of cylinder. The incident potential function can be written as 
 

( ) ziKin
xn

n

n
0

in zeerKJi θ
+∞

−∞=
∑φ=φ                                                            (6.7) 

 
Consequently, the incident stresses are found: 
 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

11 12in 2 2 n in
r r 0 x 13 z n x

n

11 12 2 n in
0 x n 2 x

n

11 12in 2 2 n in
r r 0 x 13 z n x

n

11 12 2 n in
0 x n 2 x

n

in n
rz 0 44 x z

n

C C
i K C K i J K r e

2

C C
K i J K r e

2
C C

i K C K i J K r e
2

C C
K i J K r e

2

iC K K i

+∞
θ

θ
=−∞

+∞
θ

−
=−∞

+∞
θ

θ
=−∞

+∞
θ

+
=−∞

=−∞

+⎡ ⎤
σ − σ = −φ +⎢ ⎥

⎣ ⎦
−

+φ

+⎡ ⎤
σ + σ = −φ +⎢ ⎥

⎣ ⎦
−

+φ

σ = φ

∑

∑

∑

∑

( ) ( ) in
n 1 x n 1 xJ K r J K r e

+∞
θ

− +

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪ −⎡ ⎤⎣ ⎦⎪⎩

∑

                                               (6.8) 

 
Finally, the boundary value problem (Eqn. 6.3) is written as an algebraic equation: 
 

11 12 13 n 1

21 22 23 n 2

31 32 33 n 3

m m m X n
m m m Y n
m m m Z n

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭

                                                              (6.9) 

 
The coefficients ijm  are defined as 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

11 12 2 2 2 (1)
11 1 13 z z 1 1 11 12 13 n 1

11 12 2 (1)
1 z 1 n 2 1

11 12 2 2 2 (1)
12 2 2 13 2 z z 2 11 12 13 n 2

11 12 2 (1)
2 2 z n 2 2

11 12 2
13 n 2

C C am C K iK q C C 2C H a
2 2

C C
1 aiK q H a

2

C C am q C q K iK C C 2C H a
2 2

C C
q aiK H a

2

C C
m i H

2

−

−

−

+⎡ ⎤
= − δ − − δ + − δ⎢ ⎥
⎣ ⎦

−
+ δ + δ

+⎡ ⎤
= − δ − − δ + − δ⎢ ⎥
⎣ ⎦

−
+ δ + δ

−
= β ( )(1) aβ

                              (6.10-1) 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

11 12 2 2 2 (1)
21 1 13 z z 1 1 11 12 13 n 1

11 12 2 (1)
1 z 1 n 2 1

11 12 2 2 2 (1)
22 2 2 13 2 z z 2 11 12 13 n 2

11 12 2 (1)
2 2 z n 2 2

11 12 2
23 n

C C am C K iK q C C 2C H a
2 2

C C
1 aiK q H a

2

C C am q C q K iK C C 2C H a
2 2

C C
q aiK H a

2

C C
m i H

2

+

+

+

+⎡ ⎤
= − δ − − δ + − δ⎢ ⎥
⎣ ⎦

−
+ δ + δ

+⎡ ⎤
= − δ − − δ + − δ⎢ ⎥
⎣ ⎦

−
+ δ + δ

−
= − β ( )(1)

2 aβ

                              (6.10-2) 

 

( ) ( )

( ) ( )

( ) ( )

2 2 (1) (1)
31 44 1 z z 1 1 1 n 1 1 n 1 1

2 2 (1) (1)
32 44 2 z 2 z 2 n 1 2 n 1 2

(1) (1)z
33 44 n 1 n 1

a am C iK K q q H a H a
2 2

a am C iK q K H a H a
2 2

Km C H a H a
2

− +

− +

− +

⎡ ⎤ ⎡ ⎤= δ − + δ δ − δ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤= δ − + δ δ − δ⎣ ⎦⎢ ⎥⎣ ⎦
β ⎡ ⎤= − β + β⎣ ⎦

                                                   (6.10-3) 

 
Also, the coefficients in  are written as: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

11 12 11 122 2 n 2 n
1 0 x 13 z n x 0 x n 2 x

11 12 11 122 2 n 2 n
2 0 x 13 z n x 0 x n 2 x

n
3 0 44 x z n 1 x n 1 x

C C C C
n K C K i J K a K i J K a

2 2

C C C C
n K C K i J K a K i J K a

2 2

n iC i K K J K a J K a

−

+

− +

⎧ + −⎡ ⎤
= φ + −φ⎪ ⎢ ⎥

⎣ ⎦⎪
⎪ + −⎡ ⎤⎪ = φ + −φ⎨ ⎢ ⎥

⎣ ⎦⎪
⎪ = −φ −⎡ ⎤⎣ ⎦⎪
⎪⎩

                            (6.11) 

 
 
7. NUMERICAL RESULTS 
 
Figure 1 represents the cylinder in an infinite cross-anisotropic medium. The cylinder is subjected to the P 
incident wave and its surface is free of stress. In the following examples, the parameters given in the Table 1 are 
assumed. 
 

Table 1 Parameters used in applications 
ρ  

( )3m/kg  
a  
( )m  

0φ  
 

vE  
( )GPa

2400 1 1 20 
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To investigate the effects of different parameters, a parametric study is performed for the same geometry and 
with the above-mentioned parameters. In this study, the cavity is subjected to the P incident wave. Figure 2 
gives the ratio of hoop stress to the parameter 2K  with respect to the ratio of vh E/E  and dimensionless wave 

number, Ka ( o0=γ , r=a, 2/π=θ ). It is seen that with increasing the ratio of vh E/E , the hoop stress 
increases. Figure 3 represents the value of hoop stress with respect to hhν  and dimensionless wave number 
( o0=γ , r=a, 2/π=θ ). It is seen the influence of this parameter ( hhν ) on the hoop stress is dominant near the 
static case and with increasing the wave number this effect vanished. Figure 4 shows the ratio of radial stress to 
the parameter 2K  with respect to the ratio of vh E/E  and radial distance from the cylinder ( o0=γ , 1Ka = , 

π=θ ). Also Figure 5 represents the value of radial stress with respect to hhν  and radial distance from the 
cylinder ( o0=γ , 1Ka = , π=θ ). As it can be seen, with increasing the ratio of vh E/E  and values of hhν  the 
radial stress increases, but the effect of ratio of the parameter hhν  is very small in compare with the ratio of 

vh E/E .  
 
 
 
 

 
 
 
 

 
Figure 1 Cylinder in an infinite cross-anisotropic medium subjected to the harmonic wave 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Ratio of hoop stress to the parameter 2K  with respect to the ratio of vh E/E  and dimensionless wave 
number ( 2/π=θ ) 
 
 
 
 
 
 
 
 

θ
γ
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Figure 3 Ratio of hoop stress to the parameter 2K  with respect to hhν  and dimensionless wave number 
( 2/π=θ ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Ratio of radial stress to the parameter 2K  with respect to the ratio of vh E/E  and radial distance from 
the cylinder ( π=θ ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Ratio of radial stress to the parameter 2K  with respect to hhν  and radial distance from the cylinder 
( π=θ ) 
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8. CONCLUSIONS 
 
An analytical method for solving the problem of wave scattering in a cross-anisotropic medium was presented. 
This method includes the solution of wave equations by means of complex functions theory. Using potential 
functions, the solution is obtained in series of the Hankel functions by means of complex functions, calculated 
from boundary conditions of the problem. Many numerical results including stresses and displacement were 
obtained for a cylinder in a cross- anisotropic medium subjected to the harmonic waves. Also the effect of many 
parameters such as vh E/E , vv E/G  and hhν  were studied. It was found that the stress field is much more 
sensitive to the anisotropy in compare with displacement field. Also the ratios of vh E/E  and vv E/G  is 
more effective on the results in compare with the parameter hhν . 
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