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ABSTRACT:

An analytical method for calculation of dynamic response of a cylindrical cavity in infinite cross-anisotropic
media using complex functions theory is presented. The basis of the method is grounded on solving the wave
equations in the complex plane and frequency domain. Solution of the partial differential equations is found in
series of the Hankel functions with unknown coefficients. Applying appropriate boundary conditions of the
problem, a set of algebraic equations are achieved. Solving these equations, the unknown coefficients and
consequently all desirable parameters such as stress, strain and displacement are calculated.

Numerical results including stress and displacement fields in vicinity of the cylinder subjected to the harmonic
waves are presented. Also the effects of important cross-anisotropic parameters are mentioned.
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1. INTRODUCTION

The problem of wave propagation and scattering in the infinite media is described by wave equations. In the
most previous researches, the isotropic conditions were considered for the media. In this way, the exact
solutions are well known such as Pao and Mow [1]; Eringen and Suhubi [2]. A few studies have been performed
for the problem of wave propagation and scattering in cross-anisotropic media. Honarvar & Sinclair [3, 4]
solved the problem of acoustic wave scattering from transversely isotropic cylinders. Also Fan et al. [5] solved
this problem for the case that cylinder encased in a solid elastic medium. Both of them are on the basis of
normal mode expansion method. Ahmad & Rahman [6, 7] solved the problem of acoustic wave scattering by
transversely isotropic cylinders with the same method but with different potential functions.

This paper presents an analytical solution for the problem of scattering of harmonic waves in an infinite cross-
anisotropic medium on the basis of complex functions theory. The use of complex functions in elastostatic
problems was expanded by Muskhelishvili [8]. Nowinski [9] solved the problem of static stress concentration
around holes subjected to uniaxial tension, using complex function theory. This method was used for solving the
problem of wave scattering by a cavity in infinite elastic media by Liu et al. [10] and Han et al. [11]. The use of
complex functions for solving the problem of wave scattering in cross-anisotropic medium is presented for the
first time. In this way, first a group of potential functions (®, ¥, X)) is applied into displacement formulation
of wave equations. Then, the governing equations are transformed into the complex plane. Solving an
eigenvalue problem, two wave numbers (quasi-P, quasi-SV) are determined. The wave number SH is found
directly. In the complex plane, solution of the resulting partial differential equations (calculation of potential
functions) is found in series of the Hankel functions (complex sum of the Bessel functions) with unknown
coefficients. These Hankel functions satisfy the radiation conditions. Applying appropriate boundary conditions
of the problem, a set of algebraic equations are achieved. Solving these equations, the unknown coefficients and
consequently potential functions are calculated. After evaluating the potential functions, all desirable parameters
such as stress and displacement can be calculated in any point of the medium. Numerical results are presented
including stress and displacement fields in the vicinity of cylinder in an infinite cross-anisotropic medium

subjected to harmonic waves. Also the effects of important parameters such as E, /E , G, /E_ and v,, are

mentioned.
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2. GOVERNING EQUATIONS
The equilibrium equation of a medium is written as:

Gyt pb; = pi; 2.1
In this statement G; is the stress tensor component, pb; is the body force, u; is the displacement vector

0
component and p is the mass density of medium. The dots () denote the differentiation respect to the time (a ).

The constitutive equations in a cross-anisotropic medium are written as below:

ou C,-C du, Ou
GX :Cll 611;; +C12 y +C13 alvlz ny :( 11 12) X + y
0x oy 0z 2 oy 0x
ou
c,=C, o, +C,,—+C; o, o, =Cy, o, , o, (2.2)
Y Ox oy 0z 0z  0Ox
ou ou
GZ=C138uX+C13 y+C335’uz c,, =C, —y+%
OX oy 0z Y 0z 0Oy
G,, Oy, ©, are the normal components of stress tensor and G, G,,, G, are the shear components of it. Also

u,,u,, u, are the components of displacements in direction x, y and z receptively. The relation between

coefficients Cij and elastic parameters is written as following:

Cy, =E,(1-v2, )/A

2.3
Cu=G -

v

C,=E
Cp= Eh(thVvh T Vi )/A {
Cis :Eh(l+vhh)vvh/A

E, and E, and are the Young's modulus in the vertical and any horizontal direction. v,, and v, is Poisson's

ratio as the corresponding operators of lateral expansion due to horizontal direct stress in a horizontal direction
and due to horizontal direct stress in a vertical direction, respectively. G is modulus of shear deformation in a

v

vertical plane. The other parameters are defined as below:

E, v g _ E
E Vi h 2(1+th)

v

A=(4vy )=V, =2v,vy,) (2.4)

From Eqns. 2.1 and 2.2 the equilibrium equations in the absence of body forces in term of displacement vector
components are derived as
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2 C. -C 2 2 o° 2
C116u2x+( - 12)5u2X+C445112x +(C“+C12j > +(C13 (:44)auz =pi,
ox 2 oy 0z 2 o0x0y 0x0z
c,—-C,)o o’ o’ 2 2
( 1 12) uzy +C,, uzy +C,, uzy _i_[cn +C12)6 Uy +(C13 +C44)6 v, = pii (2.5)
2 0x oy 0z 2 0x0y Y
o’u, o’u, o’u, o’u, d’u .
C44 8}(2 +C44 ayz +C33 822 +(C13+C44)@+(C13+C44)ay—a;:puz

3. POTENTIAL FUNCTIONS

The relation between displacements and potential functions (®, ¥, X)) is defined as below:
U=VO+Vx(XE,)+aVxVx(¥e,) 3.1)

in which "a" is the radius of the cylindrical cavity. In the Cartesian coordinates:

2 2
uxza£+a_X+aa\P u =a;()—a—>(—i—aa\P uz=62—aV2‘P (32)
ox Jdy  0Ox0z Y oy oOx  Oyoz 0z

where u_, u,, u, are the Cartesian components of the u; . Therefore, Eqn. 2.5 is converted to the two groups

of equations (@ = e 'e"", ¥ =ye e, and X =y e ")

2 0%¢ 2 0 2 o’y 2
C,V ‘1)"'(C13"‘2C44)§"'pCO ¢+a§ (Cll_cl3_cl4)V W+C44¥+p(9 v (=0

(3.3)
0 o’ o’
E|:(C13 +2C,, )Vzd) +Cy 57(1) + pwz(l)} - 3V2|:C44V2\|1 + (C33 -C;-Cy )67\3 + p@Z\V} =0
_ 2
(—C“ 2C12 jv2x+c44 %ﬂ po’y =0 (3.4)
where V' is the two-dimensional Laplace operator:
2 2
V?= ;;2 +% (3.5)

and o is the frequency of the waves.
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4. COMPLEX FUNCTIONS

The complex variables are introduced:

C=x+1y C=x-iy (=re" (4.1
Using relations below,
06_90.,90 9 _jo_2 4.2)
ox 0¢ o¢ oy o ocC
2 2 2 2 2 2 2 2
82:82+2 8_+ 8_2 62:— 62—2 8_+ 6_2 (4.3)
ox~  0C oco¢  ocC oy oC 0cof  oC

the Laplace operator in the complex plane is obtained as

62

Vi=4—— (4.4)

0CoC

Also, the potential functions are considered as below:
+00 . +00 . +00 )

b= a,HO (5r)e™ y=3 b HO(r)e™ =3 e HO (Br)e™ @5)

Hfll)(ﬁr) is the Hankel function of first kind and order n:
HY(¢r) =T, (¢r)+iY, (or) (4.6)

where J (Zr) and Y, (Er) are the Bessel functions of first and second kind respectively and of order n. This
type of the Hankel function satisfies the radiation boundary condition (Sommerfield condition). Also a_, b, are
the unknown coefficients. Based on Eqns. 4.4, 4.5 and relations below,

5 in f i(n—
LIy (ee]- Ly e @)

(¢r)em e (4.8)

n+l

0 - 0
—[H(fr)e™ |=——H)
sl (me]=—3

Eqn. 3.3 is converted to an eigenvalue problem as

|:a11a12}{¢}:0 4.9)
Ay dy |V

The coefficients a; are
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a, =C, 8 +(C,+2C,)K? - po’

a, =aik,[(C,, —C,; —C,,)8" + C,.K2 - po’]
a, =iK,|(C,, +2C,,)8> +C,, K2 —po?]

2, =a6°|C,,8° +(Cyy —C 3 —C,y K2 —poo’]

(4.10-1)
(4.10-2)

Solving this eigenvalue problem, two values for & will be found. (8, for quasi-P wave (qP), 0, for quasi-SV
wave (qSV)). Also from Eqn. 3.4, the wave number 3 for SH wave is achieved directly as

0l —C K2 1/2
B:{zw} (4.11)
(Cll_clz)

Finally, the potential functions are written as below:

b= D X,HU(B0)e™ +q, 3V, HO(@,1)e

n=—oo n=-—co

. . (4.12)
v=q, 2 X, H(E,r)e™ + > Y, H(5,r)e™
= > ZH" (Br)e™ (4.13)
in which:
q,=-a,/a,=-a,/a,, for 6=9, (4.14)
q, =—a,,/a,, =—a,/a,, for 6=9, (4.15)

The unknown coefficients, X , Y, and Z  are calculated from boundary conditions of the problem. Now,

knowing the potential functions, displacements and stresses and can be calculated from the known potential
functions and then the boundary value problem can be solved.

5. DISPLACEMENT ANS STRESSFIELDS

Using Eqn. 3.2, the displacement field is:

n+l
n=-—oo n=

u, +iu, :—81(1+aiKqu)anH“) (3,r)e™ —5,(q, +aiK, ZY H®" (3,r)e™ +1BZZ HY (Br)e™

u, —iu, =8, (1+aik X, HY,(8,r)e™ +8,(q, +aiK ) YH(” (8,r)e™ +i WH“) r)e™ (.1)
,=8,(1+aik,q,)3 d B (8

n=—w n=-ow

=(iKZ +aq16f)anHS)(§)lr)ei“e (1K q, +ad; )ZY H (8,r)e™

n+1

n=—0 n=—o

u,, u,, u, are the radial, tangential and normal components of displacement vector respectively.

For calculating the stresses, Eqn. 2.2 is written as below:
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Ou
c$r+cs(,:(C”+C12)(aux y] ou,

ox 0Oy P oz
6,—0, +2ic,, =—(C, —Clz)(aix—i%J(ux —iuy)62ie (5.2)

du
c,=C, (&l" %jc056+ —y+% sin 6
0z 0x 0z 0Oy

where 6., G, are the radial and hoop components of stress tensor and ¢, G, are the shear components of it.
These relations in complex plane and in term of potential function are

) C,+C 0’ a 0 0’ 0 ;
0,~10,4 = wvzd”‘cls 67?+5(C11 +C, _2C13)§V2\V+2(C11 _Clz)aC (¢+1X+aa_\;fjeze
2 2
o, +i0, :Mvde'CB 8_(1)+E(Cll +Cy, _2C13) g 4 W"‘z(cll CIZ) g (¢_1X+38\Vjem (.3)
oz- 2 oz GQ 0z
o, =C, e 0 g0 0|, 00 I ISR (4
o o¢ 0z GZ oC o¢ ) oz

(The second and third relations have been constructed from subtracting the second and third relations of Eqn.
5.2.). Finally, Eqn. 5.3 is written in term of the Hankel functions as below:

o, —ic z{_wgf_cwl{i Zleql8 (C11+C12 13)} anHg)(Slr)eine

T 0
(Cn _C12) 2 : - ) in®
+——9 (l +aikK,q, ) zXanfz (511‘)6
n=- (5.4-1)
+l:_wq26§ _Clsqui _%iKz6§(C11 +C, _2C13)} ZYnHill)(azr)eme
+ (Cll ;C )8 (q2 +alK ZY H(l) 8 r) mG ( B ZZ H(l) mG
0, +i0, = [_w&z -CK; _%iqulslz(Cll +C, -2C;; )} ZXnHS) (811‘)6ine
PO Lol ik q) Ex O r)e
n=- (5.4-2)
+|:_wchsi _C13q2K§ —%iKZSﬂC” +C12 _2C13)} zYan)(Szr)eme
HCu=Co)s 2(q, +aik, ZY H),(8,r)e™ - i(c” ) p’ ZZ H, (Br)e™

2 —
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[K 2xg 42 qISZ} S X, [HO, (8,r) - HO, (8,r) ™

n=-—oo

{1K q,-——K+= SZJ Z Y, [H(l) )—H{, 82r)] e (5.4-3)

2, [0, (pr) 2 (pr) e

6. BOUNDARY VALUE PROBLEM

Now consider a cylindrical cavity in an infinite medium is subjected to a harmonic incident wave. The radius of
cavity is “a” and on its surface the stress is vanished. Theses boundary conditions should be satisfied at the
cavity surface

G,—16,=0
G, +16,=0 at r=a (6.1)
c,=0

All of the wave variables are the sum of incident and scattering components, therefore the potential functions
are written as

q): (I)in + ¢SC \V :Win +\|Isc X — Xin +Xsc (62)

where ¢, W™, ™ are the incident and ¢*, y*, %* are the scattered components of the potential functions.
Therefore the boundary conditions at the cavity surface are

(r-i00)"+(0,19)"=0

(G +ic,,

\./
/—\
\_/
8
Il
e
g
-
Il
o

(6.3)

Grz +o00 =0

Incident components of the stresses are derived from incident potential functions using Eqn. 5.3. Also scattering
component of these variables is found in Eqns. 5.4-1 to 5.4-3. In the case of dilatational incident wave (P wave),
the incident potential function is written as

(I)in — ¢OelKXxelez (64)
¢, is a coefficient and
K =Kcosy K, =Ksiny (6.5)

K is the wave number and is related to the wave frequency as following:

1/2
o= K(C—J (6.6)
p
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Also v is the angle of incident wave with axis of cylinder. The incident potential function can be written as

d)in — (I)O +Z.Oin]n (er)eineeiKZz (67)

Consequently, the incident stresses are found:

(o, —ic,)"=—0, {—(C“ ;Clz) K: + CBKi} i "], (K,r)e™
(Cn ;C12) Ki i ian,z (er)eine

n=-—oo

+h,

(o, +io) "= b, {(Cchn) K2+ CBKE} S (K r)e™ 638)
(Cn ;CIZ) Ki i insz (er)eine

n=-—oo

+h,

+00

o =¢,iC, K K, Z i [ T (Ko)-T,., (Kr)] it

n=—oo

Finally, the boundary value problem (Eqn. 6.3) is written as an algebraic equation:

m, m, m;||X, n,
m, m, m,|[{Y, =10, (6.9)
my my, my||Z, n,

The coefficients m;; are defined as
C,+C
m,, = {—(“—2“)53 -C,K? —%iqulzsf (C,+C,-2C, )} HY (3,a)

+@5? (1+aiK,q,)HY, (3,a)

m,, = {—(Cch”)qzsg -C,q,K2 —%iKzsg (C,+C, —2C13)} HY" (8,a) (6.10-1)
+@3§ (q, +aiK, ) HY, (5.0)
m; = iwyl{g)z (Ba)
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m,, = {_(Cchlz)glz ~C, K> _%iqulaf (C,+C, —2c13)} HY (8,a)

+@55 (1+aiK,q,)H,, (8,2)

e |:_(CL2C12)(126§ _ C13q2K§ _%1K26§ (C11 +C,-2C; )} Hiﬂ) (823-) (6.10-2)
AGCeli g, caik, 0, (5.0)
(G, -C
my; = —1(“—212)[321{&32 (Ba)

my, = C,,9, |:iKz _%Kiql "'%(11612 } I:ngl (8,a)-H,., (813)]

m., =C,5, {iquz e +%5§}[ng1 (8,2)H, (8,2)] (6.103)
K
m, =—C,, TZB[HSZI (Ba)+HY, (Ba)]

Also, the coefficients n; are written as:

n =0 Gl e ki, (k) -0, )i (k)

n, =0, MKi +C, K2 |i", (K a)—d)OMKz i), (K.a) (6.11)

X X

n; =—¢,iC,i"K K, [Jn—l (Kxa) —J o (Kxa’):l

7.NUMERICAL RESULTS
Figure 1 represents the cylinder in an infinite cross-anisotropic medium. The cylinder is subjected to the P
incident wave and its surface is free of stress. In the following examples, the parameters given in the Table 1 are

assumed.

Table 1 Parameters used in applications

P a d, E,
(kg/m*) | (m) (GPa)
2400 1 1 20
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To investigate the effects of different parameters, a parametric study is performed for the same geometry and
with the above-mentioned parameters. In this study, the cavity is subjected to the P incident wave. Figure 2

gives the ratio of hoop stress to the parameter K* with respect to the ratio of E, /E_ and dimensionless wave
number, Ka (y=0", r=a, 0 =m/2). It is seen that with increasing the ratio of E, /E_, the hoop stress
increases. Figure 3 represents the value of hoop stress with respect to v,, and dimensionless wave number

(y=0",r=a, 0 =m/2). It is seen the influence of this parameter (v,, ) on the hoop stress is dominant near the
static case and with increasing the wave number this effect vanished. Figure 4 shows the ratio of radial stress to
the parameter K* with respect to the ratio of E, /E, and radial distance from the cylinder (y =0, Ka =1,

0 =m). Also Figure 5 represents the value of radial stress with respect to v,, and radial distance from the
cylinder (y=0", Ka=1, 6 =m). As it can be seen, with increasing the ratio of E, /E_ and values of v,, the

radial stress increases, but the effect of ratio of the parameter v, is very small in compare with the ratio of
E,/E,.

Figure 1 Cylinder in an infinite cross-anisotropic medium subjected to the harmonic wave
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Figure 2 Ratio of hoop stress to the parameter K* with respect to the ratio of E,/E, and dimensionless wave
number (0 =m7/2)
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Figure 3 Ratio of hoop stress to the parameter K* with respect to v,, and dimensionless wave number
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Figure 4 Ratio of radial stress to the parameter K* with respect to the ratio of E, /E, and radial distance from
the cylinder (6 =)
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Figure 5 Ratio of radial stress to the parameter K* with respect to v, and radial distance from the cylinder
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8. CONCLUSIONS

An analytical method for solving the problem of wave scattering in a cross-anisotropic medium was presented.
This method includes the solution of wave equations by means of complex functions theory. Using potential
functions, the solution is obtained in series of the Hankel functions by means of complex functions, calculated
from boundary conditions of the problem. Many numerical results including stresses and displacement were
obtained for a cylinder in a cross- anisotropic medium subjected to the harmonic waves. Also the effect of many

parameters such as E, /E , G ,/E, and v, were studied. It was found that the stress field is much more
sensitive to the anisotropy in compare with displacement field. Also the ratios of E, /E and G /E, is

more effective on the results in compare with the parameterv,; .

9. REFERENCES

1 Pao, Y.H. and Mow, C.C. (1973) Diffraction of Elastic Waves and Dynamic Stress Concentrations.
Crane, Russak & Co. Inc., New York.

2 Erigen, A.C. and Suhubi, E.S.(1964). Elastodynamics, 2, Academic press, New York.

3 Honarvar F, Sinclair AN. (1966) Acoustic wave scattering from transversely isotropic cylinders. J.
Acoust. Soc. Am. 100(1):57-63.

4 Honarvar F, Sinclair AN. (1988) Response to “Representation of the displacement in terms of
scalar functions for use in transversely isotropic materials” [J. Acoust. Soc. Am. 104, 3675 (1998)]. J.
Acoust. Soc. Am. 104(6):3677.

5 Fan Y, Sinclair AN, Honarvar F. (1999) Scattering of a plane acoustic wave from a transversely
isotropic cylinder encased in a solid elastic medium. J. Acoust. Soc. Am. 106(3):1229-1236.

6 Ahmad F, Rahman A. (2000) Acoustic scattering by transversely isotropic cylinders. International
Journal of Engineering Science 38:325-335.

7 Rahman A, Ahmad F. (1998) Representation of the displacement in terms of scalar functions for use
in transversely isotropic materials. J. Acoust. Soc. Am. 104(6):3675-3676.

8 Muskhelishvili, N.I. (1963) Some Basic Problems of the Mathematical Theory of Elasticity. Trans.
from 4™ Edn. (In Russian) by J.R.M. Radok, University of Groningen, Netherlands, Noordhoff, New
York.

9 Nowinski, J.L. (1982). "Stress concentration around holes in a class of theological materials displaying
a poroealstic structure." Developments in Mechanics, 6, 445-458.

10 Liu D., Gai B. and Tao G. (1982) Application of the complex functions to dynamic stress
concentrations, Wave Motion 4, 293-304.

11 Han R., Yeh K., Liu G. and Liu D. (1992) Scattering of plane SH-waves by a cylindrical canyon of
arbitrary shape in anisotropic media, Int. J. Engng. Sci. 12, 1773-1787.

12



